1,3-Dipolar cycloaddition route to nitrogen heterocyclic triones

Raymond C. F. Jones, ${ }^{* a}$ Gurdip Bhalay, ${ }^{b}$ Paul A. Carter, ${ }^{c}$ Kathryn A. M. Duller ${ }^{a}$ and Stephen H. Dunn ${ }^{a}$
${ }^{a}$ Department of Chemistry, The Open University, Walton Hall, Milton Keynes, UK MK7 6AA
${ }^{b}$ Department of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD
${ }^{c}$ Shell Forschung, Postfach 100, D-6501 Schwabenheim, Germany

Received (in Cambridge) 5th January 1999, Accepted 12th February 1999

1,3-Dipolar cycloaddition of nitrile oxides, formed in situ by dehydration of primary nitro compounds, with pyrrolidine enamines of protected γ - or δ-amino- β-keto esters affords isoxazole- 4 -carboxylates; these undergo lactam formation and $\mathrm{N}-\mathrm{O}$ bond cleavage to afford 3-acyltetramic acids and 3-acyl-4-hydroxypyridin-2-ones.

Introduction

The 3-acyltetramic acids (3-acylpyrrolidine-2,4-diones) $\mathbf{1}$ and

their six-membered ring analogues, the 3-acyl-4-hydroxy-pyridin-2-ones $\mathbf{2}$, are a structurally diverse group of biologically active natural products having in common an enolised heterocyclic tricarbonyl moiety. $\dagger^{1,2}$ This nitrogen heterocyclic unit
\dagger For $\mathbf{1}$ we illustrate a 3-exo-enol tautomer, the major tautomer in nonpolar solvents or the solid state. ${ }^{1,2}$ Compounds 2 exist as the illustrated endo-enol tautomer.
incorporates an acyl group at $\mathrm{C}-3$, forming a β, β^{\prime}-triketo system and causing the acyltetramic acids to be acidic ($\mathrm{p} K_{\mathrm{a}} 3-7$).

The simplest acyltetramic acid natural product is tenuazonic acid 3, originally isolated from Alternaria tenuis ${ }^{3}$ and shown to inhibit the incorporation of thymidine into DNA. ${ }^{4}$ Other natural products having a saturated 3 -acyl side-chain include the antiprotozoal compound malonomycin, ${ }^{5}$ and α-cyclopiazonic acid, a mycotoxin isolated from the fungus Penicillium cyclopium Westling ${ }^{6}$ which grows on agricultural products. Another group has the acyltetramic acid unit embedded within a macrocyclic lactam, exemplified by the antiprotozoal agent ikarugamycin 4, isolated from Streptomyces phaeochromogenes var. ikaruganensis Sakai, ${ }^{7}$ and whose structure elucidation ${ }^{8}$ has been followed by several syntheses. ${ }^{9,10}$ A larger group of acyltetramic acids carry a dienoyl or polyenoyl side chain at C-3, for example, the antimicrobial and antileukemic streptolydigin, ${ }^{11}$ and the highly toxic pigment erythroskyrine 5 from P. islandicum, which has shown antibiotic action against Staphylococcus species. ${ }^{12}$

In the 3-acyl-4-hydroxypyridin-2-one group, two of the simplest natural products are tenellin $\mathbf{6}$ and bassianin 7, closely related bright yellow pigments from the insect pathogenic fungi Beauveria tenella and B. bassiana, respectively. ${ }^{13,14}$ Others include the elfamycin antibiotics, kirromycin (mocimycin), ${ }^{15,16}$ and aurodox (goldinodax, antibiotic X-5108), the N-methyl analogue of kirromycin. ${ }^{17}$ Related structures to aurodox are heneicomycin ${ }^{18}$ and efrotomycin. ${ }^{19}$ Total syntheses of aurodox and efrotomycin have been completed by Nicolaou et al. ${ }^{20}$

There is considerable interest in the heterocyclic triones, particularly as antibiotics, antiviral and antifungal agents, and this range of biological properties makes them interesting targets for synthesis and biological evaluation. Problems associated with handling these highly polar moieties have prompted us to develop strategies which avoid forming the enolic unit until the final stages of the synthetic sequence. ${ }^{21}$
We propose a new approach (Scheme 1) combining the known disconnection of tetramic acids to β-keto esters ${ }^{22}$ with the concept of isoxazoles as masked 1,3 -dicarbonyl compounds. ${ }^{23}$ The required isoxazoles could be assembled by 1,3dipolar cycloaddition of a nitrile oxide to the pyrrolidine enamine of an amino-substituted β-keto ester, followed by spontaneous elimination of pyrrolidine to leave an isoxazole4 -carboxylate ester. ${ }^{24}$ The β-keto esters are available from α - or β-amino acids by a number of protocols. ${ }^{25}$ The formation of 4-carboxyisoxazoles via 1,3-dipolar cycloaddition of β-enamino esters is known to occur regiospecifically. ${ }^{24}$ Deprotection of the amino group and closure of the required nitrogen heterocycle to form 8a,b would be followed by opening of the

Scheme 1

isoxazole ring by hydrogenation ${ }^{26}$ or another $\mathrm{N}-\mathrm{O}$ bond cleavage method, ${ }^{27-29}$ to 'unmask' the acyltetramic acid or acylpyridone at a late stage of the sequence. Using isoxazole building blocks allows elaboration of the nitrogen heterocyclic triones via non-polar intermediates. The key $\mathrm{C}-\mathrm{C}$ bond formation, to attach the 3-acyl side-chain, occurs in the 1,3-dipolar cycloaddition which ensures C-acylation of a 1,3-dicarbonyl compound.

We report herein details of our studies ${ }^{30}$ which demonstrate application of this strategy to heterocyclic triones $\mathbf{1}$ and 2 (we have recently described our findings with the analogous oxygen heterocyclic systems ${ }^{31}$).

Results and discussion

Before arriving at the strategy of Scheme 1, our first isoxazolebased approach began with ethyl 3,5-dimethylisoxazole-4-carboxylate 9 (Scheme 2). There was precedent for

Scheme 2 Reagents: i, pyrrolidine, benzene, reflux; ii, $\mathrm{EtNO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{POCl}_{3}, 0-5^{\circ} \mathrm{C}$; iii, NBS, UV, CCl_{4} reflux; iv, potassium phthalimide, DMF, $25^{\circ} \mathrm{C}$; v, $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{MeOH}$, reflux.
functionalization of this molecule at the C-5 methyl group, ${ }^{32}$ so we proposed to introduce the amino substituent after isoxazole formation. Our initial strategy was thus to brominate at the $\mathrm{C}-5(\mathrm{Me})$, convert the bromide into a primary amine and cyclize to give the required bicyclic precursor to the 3-acylpyrrolidine-2,4-diones.

Isoxazole 9 was synthesised by a variant of the method of Stork et al. ${ }^{24}$ The enamine of ethyl acetoacetate was formed quantitatively under Dean-Stark conditions with pyrrolidine in benzene, and reacted with acetonitrile oxide, formed in situ by
slow addition of POCl_{3} to a solution of EtNO_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ with the enamine. Distillation afforded ethyl 3,5 -dimethylisoxazole-4-carboxylate $9(42 \%)$. Phosphorus oxychloride was preferred to phenyl isocyanate ${ }^{24}$ as dehydrating agent, since its use avoids the problematic (to separate) diphenylurea by-product without compromising the yield. Functionalisation at the C-5 methyl group was achieved with NBS using photolytic initiation in CCl_{4} at reflux to yield the sensitive ethyl 5-bromomethyl-3-methylisoxazole-4-carboxylate $\mathbf{1 0}(90 \%)$. Treatment of the crude bromide with potassium phthalimide in DMF afforded ethyl 3-methyl-5-phthalimidomethylisoxazole-4-carboxylate $(41 \%) \mathbf{1 1}$ which was deprotected with hydrazine hydrate to yield 5 -aminomethylisoxazole $\mathbf{1 2}$ (84%). We hoped for spontaneous cyclisation of this amino ester to the pyrroloisoxazole 8a but there was no evidence of this under the deprotection conditions (MeOH , reflux). More forcing conditions, such as heating in xylene in a sealed tube, also led to recovery of amino ester $\mathbf{1 2}$ unchanged.

A modification of this approach was used in an attempted synthesis of the 3 -acyl-4-hydroxypyridin-2-one unit. The pyrrolidine enamine of diethyl 3-oxopentane-1,5-dioate, formed in benzene under Dean-Stark conditions, was reacted with acetonitrile oxide as before to produce ethyl 5-ethoxycarb-onylmethyl-3-methylisoxazole-4-carboxylate 13 (44\%) (Scheme 3). The same sequence using dimethyl 3 -oxopentane-1,5-dioate

Scheme 3 Reagents: i, pyrrolidine, benzene, reflux; ii, $\mathrm{EtNO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{POCl}_{3}, 0-5^{\circ} \mathrm{C}$; iii, for 16: $\mathrm{NH}_{4} \mathrm{OH}$ aq., $25^{\circ} \mathrm{C}$; for 17: MeNH_{2} aq., $25^{\circ} \mathrm{C}$; iv, NaOH aq.; v , DCC.
gave the corresponding isoxazole 14 (44%). Regioselective reaction of the C-5 side-chain ester of $\mathbf{1 3}$ with aqueous ammonia led to ethyl 5-carbamoylmethyl-3-methylisoxazole-4-carboxylate $\mathbf{1 6}(92 \%)$, while methylamine gave the N-methylamide $\mathbf{1 7}$ (99\%).

Our intention had been to cyclise the amide $\mathbf{1 6}$ to generate the imide 18 (Scheme 3), which should undergo regioselective reduction (to an aminal) and dehydration to 19 to introduce the C-6/7 double bond required for most of the pyridone natural products. Despite several attempts we were unable to form the imide 18. Saponification of the diester 13 led to the diacid 15, from which the cyclic anhydride 20 was prepared in good yield using DCC. This is potentially another precursor to imide $\mathbf{1 8}$, but at this point these approaches were superseded.

In the ultimately successful alternative strategy of Scheme 1 as a route to the 3-acylpyrrolidine-2,4-diones and 3-acyl-4-hydroxypyridin-2-ones, the amino group is built into the starting materials. Our initial targets were the key bicyclic intermediates $\mathbf{8 a}, \mathbf{b}$ which we envisaged being formed ultimately from an α - or β-amino acid, respectively.

The first requirement was to elaborate the carboxylic acid function to generate a β-keto ester. β-Keto ester synthesis from amino acids has been achieved by a number of protocols, from which we selected the approach of Pollet and Gelin. ${ }^{25}$ Thus

Scheme 4 Reagents: i, 1, 1^{\prime}-carbonyldiimidazole, THF, $25^{\circ} \mathrm{C}$; then ethyl hydrogen malonate Mg -chelate; ii, pyrrolidine, toluene, reflux; iii, $\mathrm{EtNO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{POCl}_{3}, 0-5^{\circ} \mathrm{C}$; iv, $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{MeOH}$, reflux.
phthalimidoacetic acid was activated as the imidazolide, which was added to the magnesium chelate formed from ethyl hydrogen malonate and propan-2-ylmagnesium bromide, to yield the β-keto ester 21 (99%) (Scheme 4). This β-keto ester was smoothly converted into the pyrrolidine enamine under Dean-Stark conditions in toluene, followed by reaction with acetonitrile oxide to produce ethyl 3-methyl-5-phthalimido-methylisoxazole-4-carboxylate 11 (43\%), which was deprotected with hydrazine hydrate to give the amino ester $\mathbf{1 2}$ (see earlier).

This sequence was repeated using different N-protecting groups. N-tert-Butoxycarbonylglycine was taken through to the corresponding isoxazole 25 in low yield, but the benzyloxycarbonyl group was introduced more efficiently. N-Benzyloxycarbonylglycine 22 was converted to ethyl 4-benzyloxycarbonylamino-3-oxobutanoate 23 (88%) and then, by reaction of the pyrrolidine enamine of this β-keto ester with acetonitrile oxide, into ethyl 5-benzyloxcarbonylaminomethyl-3-methylisoxazole-4-carboxylate 24 (30\%) (Scheme 5). The benzyloxycarbonyl group was removed with HBr in glacial acetic acid ($33 \% \mathrm{w} / \mathrm{v}$) to give the amine hydrobromide $26(86 \%)$, and treatment of this salt with aqueous base led again to the amino ester 12. As observed above, there was no evidence of cyclisation to form the bicyclic lactam 8a. We presume this is due to the strain that would arise in the new ring from the three
sp^{2} centres and the amide bond, in conjunction with deactivation of the $\mathrm{C}-4$ carboxy group via conjugation.

To achieve the required cyclisation, further activation of the ester carbonyl was clearly necessary. The isoxazole ester $\mathbf{2 4}$ was hydrolysed (aqueous NaOH) to afford 5-benzyloxycarbonyl-aminomethyl-3-methylisoxazole-4-carboxylic acid 27 (73%), which was activated as a mixed anhydride by reaction with triethylamine and ethyl chloroformate. This intermediate was not normally isolated (although it has been identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy) but used directly. Addition of HBr in glacial acetic acid to this material resulted in the removal of the benzyloxycarbonyl protecting group and cyclisation to form 3-methyl-5,6-dihydro- 4 H -pyrrolo[3,4-d]isoxazol-4-one 8a as its hydrobromide salt 28 (80%) (Scheme 5). Various methods to isolate the free isoxazole proved unsuccessful.

To complete this strategy, catalytic hydrogenation over palladium-charcoal was successfully applied for the reduction of the $\mathrm{N}-\mathrm{O}$ bond of salt $\mathbf{2 8}$, so long as the reaction was stopped after uptake of one equivalent of H_{2}. The intermediate enaminone salt was isolated and base hydrolysis efficiently released 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione (3-acetyltetramic acid) 29 (91%) (Scheme 5). If hydrogenation was allowed to continue, a complex mixture of polar materials was isolated; further investigation showed the acyltetramic acid 29 to be unstable under the hydrogenation conditions. This $\mathrm{N}-\mathrm{O}$ cleavage method is suitable if the side-chains are saturated, but if reducible side-chains have been introduced, these could also react under hydrogenation conditions. Various other reagents have been used to facilitate cleavage in these cases, and our studies with SmI_{2} and $\mathrm{Mo}(\mathrm{CO})_{6}$ will be reported in detail elsewhere. ${ }^{33}$

To position a substituent at C-6 of 3-methyl-5,6-dihydro-4H-pyrrolo[3,4- d]isoxazol-4-one hydrobromide 28, i.e. at $\mathrm{C}-5$ of the eventual 3-acyltetramic acid, an obvious method would be to introduce the substituent as the side-chain of the original amino acid. We thus prepared the corresponding β-keto esters from N-benzyloxycarbonyl-alanine, -isoleucine and -valine, but were unable to convert these into the pyrrolidine enamines, even with use of Lewis acids.

We briefly examined alkyne esters as an alternative source of the desired pyrrolidine enamines, derived from amino acids other than glycine. Ethyl 4-(benzyloxycarbonylamino)pent-2-

Scheme 5 Reagents: i, 1, '1'-carbonyldiimidazole, THF; then ethyl hydrogen malonate Mg-chelate; ii, pyrrolidine, toluene, reflux; iii, $\mathrm{EtNO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{POCl}_{3}, 0-5^{\circ} \mathrm{C}$; iv, $\mathrm{HBr}-\mathrm{AcOH}$; v, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq.; vi, NaOH aq., reflux; vii, $\mathrm{EtOCOCl}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$; viii, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$, ethanol; ix, NaOH aq., $25^{\circ} \mathrm{C}$.

Scheme 6 Reagents: i, 1, 1'-carbonyldiimidazole, THF; then ethyl hydrogen malonate Mg-chelate; ii, pyrrolidine, toluene, reflux; iii, EtNO_{2}, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{POCl}_{3}, 0-5{ }^{\circ} \mathrm{C}$; iv, $\mathrm{HBr}-\mathrm{AcOH}$; v, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq.; vi, NaOH aq., reflux; vii, $\mathrm{EtOCOCl}, N$-methylmorpholine, $0{ }^{\circ} \mathrm{C}$; viii, BuLi , $\mathrm{Boc} \mathrm{C}_{2} \mathrm{O} ; \mathrm{ix}, \mathrm{LiNPr}{ }_{2}$ (2 equiv.), THF, $-78^{\circ} \mathrm{C}, \mathrm{PhSeCl} ; \mathrm{x}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{AcOH}$ aq.

ynoate 30 was prepared ${ }^{34}$ from 2-(benzyloxycarbonylamino)propanal (itself derived from the N-protected alanine methyl ester), but in only a low yield that was not easily reproducible. This led us to prepare an alternative, ethyl 4-(dibenzylamino)-pent-2-ynoate 31, from N, N-dibenzylalanine benzyl ester, ${ }^{35}$ via the corresponding aldehyde. Although direct 1,3-dipolar cycloaddition of alkyne ester 31 with acetonitrile oxide was unsuccessful, treatment with pyrrolidine in refluxing EtOH produced the enamine 32 which did undergo cycloaddition with nitrile oxides, but not in synthetically useful yields. Thus reaction with acetonitrile oxide gave ethyl 5-(1-dibenzyl-aminoethyl)-3-methylisoxazole-4-carboxylate 33 (10\%), and with benzonitrile oxide (formed from benzaldehyde oxime) gave ethyl 5-(1-dibenzylaminoethyl)-3-phenylisoxazole-4-carboxylate $34(5 \%)$. These low yields and the need for a simple deprotection protocol for the amino group halted further efforts in this direction.

An attempt was made to introduce substituents at C-6 of bicycle 28 by deprotonation-alkylation. The salt was treated at $-78^{\circ} \mathrm{C}$ in HMPA-THF with LDA (3 equiv.) followed by $\mathrm{PhCH}_{2} \mathrm{Br}$, but no 6-benzyl product was observed. To avoid the need for dianion formation, the lactam nitrogen was protected as the benzoyl derivative 35, by treatment of the salt 28 with BuLi and PhCOCl at $-78^{\circ} \mathrm{C}(56 \%)$. However, attempted deprotonation of imide $\mathbf{3 5}$ with either LDA or BuLi, followed
by addition of iodomethane, led only to recovery of starting material.

Having devised successful methodology for the 3-acylpyrrol-idine-2,4-dione (3-acyltetramic acid) series, we extended the same methodology to the six-membered 3-acyl-4-hydroxypyridone series. The disconnections of Scheme $1(n=1)$ lead to the amino acid β-alanine. Thus N-benzyloxycarbonyl- β-alanine 36 was elaborated via the protocol described above to produce the β-keto ester ethyl 5-benzyloxycarbonylamino-3-oxopentanoate 37 (91%) (Scheme 6). The enamine of the β-keto ester was generated as usual with pyrrolidine under Dean-Stark conditions, and reacted directly with acetonitrile oxide to form ethyl 5-(2-benzyloxycarbonylaminoethyl)-3-methylisoxazole-4-carboxylate $38(68 \%)$. The benzyloxycarbonyl protecting group was readily removed by treatment with HBr in glacial acetic acid to give the hydrobromide salt $39(90 \%)$. Basification of this salt (aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$) presumably formed the free amino ester, although this was not isolated because spontaneous closure of the six-membered ring occurred to form 3-methyl-4,5,6,7-tetra-hydroisoxazolo[4,5-c]pyridin-4-one 8b (96\%). Alternatively, but less directly, saponification of the ester 38 to acid 40 (86%), activation as the mixed anhydride and treatment with HBr in glacial acetic acid, afforded the isoxazolopyridone as its hydrobromide salt $41(62 \%)$ in a parallel to the preparation of bicycle 28.

For most of the natural products of the 3-acyl-4-hydroxy-pyridin-2-one group, a double bond is required between $\mathrm{C}-5$ and C-6, corresponding to C-7 and C-6, respectively, of the isoxazolopyridone $\mathbf{8 b}$ ($c f$. Scheme 6). A phenylselenationoxidative elimination approach was used to introduce this double bond. ${ }^{36}$ Initially we prepared the N-protected derivative $\mathbf{4 2}$ from pyridone $\mathbf{8 b}$ using di-tert-butyl dicarbonate and BuLi (69%) : LDA was less effective. However, attempted C-deprotonation (BuLi or LDA) of $\mathbf{4 2}$ followed by treatment with phenylselenenyl chloride led to partial decomposition. In contrast, formation of the dianion from pyridone $\mathbf{8 b}$ with LDA (2 equiv.) and reaction with phenyl selenenyl chloride resulted in the formation of the phenyl selenide 43 (79%). Oxidative elimination of the 7-phenylselenyl group on treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ and aqueous acetic acid cleanly introduced the C-6,7 double bond to yield 3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 19 (92\%) (Scheme 6).

A remaining task was the introduction of substituents at C-7 of the tetrahydroisoxazolopyridone $\mathbf{8 b}$ or the unsaturated derivative 19, and a palladium-catalysed coupling seemed appropriate to introduce aryl side chains. Heck coupling ${ }^{37}$ was initially attempted between bicycle 19 and 4-bromoanisole with $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{PPh}_{3}$ as the catalyst system, but the required 7-phenyl species was not formed.
We therefore turned to another palladium-catalysed process, the Stille reaction, ${ }^{38}$ which involves coupling between an organo halide and an organotin species. It was thus necessary to introduce a halogen at C -7 in 3-methyl-4,5-dihydroisoxazolo-[4,5-c]pyridin-4-one 19. Bromination of the pyridone $\mathbf{8 b}$ was attempted using LDA (3 equiv.) followed by excess bromine, in the hope that this would lead to dibromination at C-7 and subsequent elimination of HBr (in the presence of diisopropylamine) to yield the required vinyl bromide, thereby bypassing the phenylselenation-oxidative elimination, but only starting material was recovered. An alternative route, however, proved successful: bromination of the enamide 19 by addition of a solution of Br_{2} in CHCl_{3}, followed by $\mathrm{Et}_{3} \mathrm{~N}$, afforded 7-bromo-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 44 (62%) (Scheme 7). There is precedent for improved Stille coup-

Scheme 7 Reagents: i, $\mathrm{Br}_{2}, \mathrm{Et}_{3} \mathrm{~N}, 25^{\circ} \mathrm{C}$; ii, I_{2} (4 equiv.), $\mathrm{CHCl}_{3}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; or ICl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$; iii, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SnBu}_{3}$ (46), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{AsPh}_{3}$ ($1: 4 \mathrm{Pd}: A s)$, THF, reflux; iv, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHSnBu}_{3}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{AsPh}_{3}(1: 4$ $\mathrm{Pd}: \mathrm{As})$, THF, reflux.
lings when the organo halide is an iodide rather than a bromide. We therefore attempted iodination of $\mathbf{1 9}$ at C-7 following the same protocol as for bromination, using either $\mathrm{Et}_{3} \mathrm{~N}$ or pyridine as base, but this returned only starting material. However, alternative procedures using I_{2} in CHCl_{3}-pyridine (1:1 v / v), ${ }^{39}$ or ICl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ did give the required 7 -iodo-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 45 (40 and 43%, respectively).

The 3-acyl-4-hydroxypyridin-2-one natural products tenellin 6 and bassianin 7 carry a 4-hydroxyphenyl group at C-5 (C-7 in the isoxazolopyridone). We therefore selected (4-methoxyphenyl)tributyltin 46 as the organotin coupling partner, which would lead to the introduction of a 4-alkoxyphenyl group that could be later transformed into the required 4-hydroxyphenyl group. 4-Bromoanisole was therefore converted into the corresponding Grignard reagent, which was treated with tributyltin chloride to form the trialkylorganotin $46 .{ }^{40}$

The 7-bromo- and 7-iodo-isoxazolopyridones, 44 and $\mathbf{4 5}$ respectively, were then subjected to Stille coupling conditions. Initial investigation was undertaken with the alkenyl bromide 44. Early reports ${ }^{38}$ used $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as catalyst in either anhydrous THF or DMF, but we observed no coupling to (4-methoxyphenyl)tributyltin 46 under these conditions. Pd-
$(\mathrm{OAc})_{2}-\mathrm{PPh}_{3}$ and the alternative, much more active, catalyst $(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}{ }^{41}$ were similarly ineffective.

We therefore turned our attention to the alkenyl iodide 45, which precedent indicated would be more reactive than bromide 44 in couplings with organotin 46. $(\mathrm{MeCN})_{2} \mathrm{PdCl}_{2}$ proved unsuccessful as catalyst in anhydrous THF or DMF, but CHCl_{3} as solvent at $25^{\circ} \mathrm{C}$ did yield the coupling product, 7-(4-methoxyphenyl)-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin4 -one 47 in low yield (19%). It has been shown that $\operatorname{Pd}\left(\mathrm{AsPh}_{3}\right)_{4}$, generated in situ from tris(dibenzylideneacetone)dipalladium and AsPh_{3}, causes a large rate acceleration relative to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \cdot{ }^{42}$ At $2 \mathrm{~mol} \%$ this catalyst gave the arylated pyridone 47 in slightly better yield (25%), but increase in the proportion of catalyst and optimisation of the conditions delivered the product 47 with a much improved yield (78%) (Scheme 7).

Using this active catalyst and the same conditions, coupling was achieved with the bromopyridone 44 to again afford the arylated pyridone 47, but in only 20% yield, confirming the large difference in reactivity between the 7-bromo- and 7-iodopyridones. The iodopyridone $\mathbf{4 5}$ was also coupled to vinyltributyltin to give the 7 -vinylpyridone $\mathbf{4 8}$ (74%).

The NMR spectroscopic data for compound 47 are worthy of comment. In the ${ }^{1} \mathrm{H}$ NMR spectrum taken in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, there are two sets of peaks for the four protons of the newly introduced 1,4-disubstituted phenyl ring, and the ${ }^{13} \mathrm{C}$ NMR spectrum shows signals additional to those predicted. Using variable temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy, and heating the sample to $100^{\circ} \mathrm{C}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, peak broadening was observed although complete coalescence of the peaks did not occur. It is possible that we are observing a mixture of pyridone and hydroxypyridine tautomers, although we have no definitive evidence on this point. Cleavage of the isoxazole ring of bicyclic pyridone 47 to produce a 3-acyl-4-hydroxypyridin-2-one confirms its structure, and is discussed later.

Methods for the introduction of alkyl chains at C-7 of isoxazolopyridone 19 were also explored. N-Methylation of tetrahydroisoxazolopyridone $\mathbf{8 b}$ using LDA and MeI was successful, yielding the product 49 (65\%) (Scheme 8). Phenyl-

Scheme 8 Reagents: i, LDA, THF, $-78^{\circ} \mathrm{C}$, MeI; ii, LDA, THF, $-78^{\circ} \mathrm{C}, \mathrm{PhSeCl}$; iii, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{AcOH}$ aq., $0^{\circ} \mathrm{C}$.
selenation of this material using LDA and PhSeCl gave the 7phenylseleno derivative $\mathbf{5 0}(38 \%)$, which was treated with LDA and MeI to afford 3,5,7-trimethyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one 51 (84%) by methylation at C-7. Oxidative elimination then gave the desired 3,5,7-trimethyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 52 (95\%). The alternative sequence of C-7 phenylselenation of $\mathbf{8 b}$ to form compound $\mathbf{4 3}$ (see above), followed by reaction with excess base and MeI, did not produce the trimethylpyridone 51.

Several of the acylpyridone natural products carry an oxygen substituent on the nitrogen atom, and we made preliminary
attempts to introduce oxygen on to $\mathrm{N}-5$ of the isoxazolopyridones. Deprotonation of the amide nitrogen atom of 3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 19 with BuLi followed by treatment with gaseous oxygen, or reaction of the tetrahydroisoxazolopyridone $\mathbf{8 b}$ with MCPBA or $\mathrm{H}_{2} \mathrm{O}_{2}$, resulted only in recovery of the starting material. Reaction of pyridone 19 with O-benzylhydroxylamine, in the expectation of substitution of NH by NOBn, proved fruitless under a variety of conditions. At this point we ceased our studies but Rigby et al. ${ }^{43}$ have reported an efficient protocol for late introduction of the N-hydroxy group.

To validate this strategy for the 3-acyl-4-hydroxypyridones, all that remained was to cleave the isoxazole $\mathrm{N}-\mathrm{O}$ bond to unmask the tricarbonyl moiety. Catalytic hydrogenation ${ }^{27}$ of the isoxazole ring again proved successful in the six-membered ring series. Thus tetrahydroisoxazolopyridone $\mathbf{8 b}$ produced a moisture sensitive enaminone, which after basic hydrolysis afforded 3-(1-hydroxyethylidene) piperidine-2,4-dione $\mathbf{5 3}$ \# (this compound can also be called 3 -acetylhomotetramic acid) in 97% yield over the two steps (Scheme 9). The hydrogenolysis-

Scheme 9 Reagents: i, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}$; ii, NaOH aq., $25^{\circ} \mathrm{C}$.
hydrolysis was also performed on the isoxazolopyridone 19 to give 3-acetyl-1,2-dihydro-4-hydroxypyridin-2-one 54, (97\%), and with 7-(4-methoxyphenyl)-3-methyl-4,5-dihydroisoxazolo-[4,5-c]pyridin-4-one 47 to afford a quantitative yield of 3-acetyl-1,2-dihydro-4-hydroxy-5-(4-methoxyphenyl)pyridin-2-
one 55, thus revealing a cyclic trione system closely related to some of the natural products. The NMR spectra of this pyridone 55 exhibited the expected patterns, with one set of proton signals for the 1,4 -disubstituted phenyl ring, cf. the observations outlined earlier for the precursor 47.

These studies have clearly demonstrated the validity of the new cycloaddition strategy for the synthesis of the nitrogen heterocyclic triones, and further efforts are underway to apply this approach.

Experimental

Melting points were determined using a Kofler hot stage apparatus and are uncorrected. IR spectra were recorded on a PerkinElmer 1720X FT spectrometer. UV Spectra were recorded on a Philips Pu 8720 spectrometer, in EtOH unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using the following instruments: at 80 MHz on a Bruker WP80SY, at 250 MHz on a
\ddagger The 3-exo-enol tautomer is illustrated, by analogy with 3-acyltetramic acids. ${ }^{1,2}$

Bruker WM250, at 270 MHz on a JEOL JNM-EX270 or at 400 MHz on a Bruker AM400. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-EX270 instrument at 68 MHz or a Bruker AM400 at 100 MHz and multiplicites were determined using DEPT sequences. J Values are given in Hz . Mass spectra were recorded on AEI MS902, VG 7070E or VG Autospec spectrometers using electron impact as the ionisation technique, unless FAB (fast atom bombardment) is indicated. Microanalytical data were obtained using a Perkin-Elmer 240B elemental analyser. All solvents were dried and distilled prior to use. ${ }^{44}$

Ethyl 3,5-dimethylisoxazole-4-carboxylate 9

Ethyl acetoacetate ($26.0 \mathrm{~g}, 0.2 \mathrm{~mol}$) and pyrrolidine ($14.2 \mathrm{~g}, 0.2$ mol) were heated together in benzene ($100 \mathrm{~cm}^{3}$) at reflux under Dean-Stark conditions. After 2 h water ($3.6 \mathrm{~cm}^{3}, 0.2 \mathrm{~mol}$) had separated, the mixture was cooled and the excess solvent evaporated under reduced pressure. To the residue was added $\mathrm{Et}_{3} \mathrm{~N}$ $\left(80.0 \mathrm{~cm}^{3}, 0.6 \mathrm{~mol}\right)$ and $\mathrm{EtNO}_{2}\left(15.8 \mathrm{~cm}^{3}, 0.22 \mathrm{~mol}\right)$ in CHCl_{3} ($200 \mathrm{~cm}^{3}$) and the solution cooled to $0^{\circ} \mathrm{C}$. To this cooled solution was added $\mathrm{POCl}_{3}(34.00 \mathrm{~g}, 0.22 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}\left(40 \mathrm{~cm}^{3}\right)$ dropwise over 1.5 h and the mixture stirred at room temperature for a further 15 h . The resultant dark mixture was poured into water $\left(200 \mathrm{~cm}^{3}\right)$ and the organic phase washed successively with 6 m hydrochloric acid $\left(70 \mathrm{~cm}^{3}\right)$, aqueous $\mathrm{NaOH}(5 \% \mathrm{w} / \mathrm{v}$, $100 \mathrm{~cm}^{3}$) and saturated brine ($100 \mathrm{~cm}^{3}$) before drying $\left(\mathrm{MgSO}_{4}\right)$, filtering and evaporating under reduced pressure to yield an orange oil which was purified by fractional distillation to give the title compound ($14.31 \mathrm{~g}, 42 \%$) as a colourless oil, bp $60-$ $63^{\circ} \mathrm{C}$ at 0.5 mmHg (lit., ${ }^{32} 60-62^{\circ} \mathrm{C}$ at 0.5 mmHg); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2983,2939,1721,1612,1460,1427,1303,1109$ and 782 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.40$ and 2.65 (each $3 \mathrm{H}, \mathrm{s}, 3$ - and $5-\mathrm{CH}_{3}$) and $4.32\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl 5-bromomethyl-3-methylisoxazole-4-carboxylate 10

To ethyl 3,5-dimethylisoxazole-4-carboxylate $9(2.0 \mathrm{~g}, 11.82$ $\mathrm{mmol})$ in $\mathrm{CCl}_{4}\left(200 \mathrm{~cm}^{3}\right)$ was added NBS $(2.73 \mathrm{~g}, 15.37 \mathrm{~mol})$, and the mixture exposed to a UV lamp and allowed to reflux under nitrogen for 4.5 h . The brown mixture was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to yield the title compound as a yellow oil ($2.63 \mathrm{~g}, 90 \%$) that was used directly; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3031,2983,2938,1720,1609$, $1425,1310,1130,1094$ and $788 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.30(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$.

Ethyl 3-methyl-5-phthalimidomethylisoxazole-4-carboxylate 11 (by bromide substitution)

To 5-bromomethyl-3-methylisoxazole-4-carboxylate $\mathbf{1 0}(1.00 \mathrm{~g}$, $4.03 \mathrm{mmol})$ in DMF $\left(40 \mathrm{~cm}^{3}\right)$ was added potassium phthalimide $(0.75 \mathrm{~g}, 4.03 \mathrm{~mol})$ and the mixture heated under nitrogen at $65^{\circ} \mathrm{C}$ for 10 h . The cooled dark brown mixture was extracted with diethyl ether $\left(2 \times 25 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed with water $\left(5 \times 30 \mathrm{~cm}^{3}\right)$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to yield the title compound as an off-white solid ($0.52 \mathrm{~g}, 41 \%$), mp $95-97^{\circ} \mathrm{C}$ (Found: C, 61.4; H, 4.7; N, 8.9\%; M ${ }^{+}$, 314.0946. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 61.14; H, 4.49; $\mathrm{N}, 8.91 \% ; M, 314.0903$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2975,2925,1710,1600,1450,1410,1390,1300$ and $1100 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.40\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.30(2 \mathrm{H}, \mathrm{s}$, $\left.J 7, \mathrm{NCH}_{2}\right), 7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.95(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(68$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.6$ and $14.2\left(\mathrm{CH}_{3}\right), 34.4$ and $61.1\left(\mathrm{CH}_{2}\right), 109.3$ $(\mathrm{C}), 123.6(\mathrm{CH}), 131.8(\mathrm{C}), 134.2(\mathrm{CH}), 160.2,161.2,167.2$ and $170.6(\mathrm{C}) ; m / z 314\left(\mathrm{M}^{+}\right), 268(100 \%), 241,160,104$ and 76.

Ethyl 5-aminomethyl-3-methylisoxazole-4-carboxylate 12 (from the N-phthalimido derivative 11)

To the phthalimide $\mathbf{1 1}(2.0 \mathrm{~g}, 6.36 \mathrm{mmol})$ in $\mathrm{EtOH}\left(25 \mathrm{~cm}^{3}\right)$ was
added hydrazine hydrate ($0.8 \mathrm{~cm}^{3}, 25.44 \mathrm{~mol}$), and the mixture heated at reflux for 8 h . After this period it was cooled and water $\left(10 \mathrm{~cm}^{3}\right)$ added, the solution acidified to pH 5 using 1 m hydrochloric acid ($30 \mathrm{~cm}^{3}$) and the mixture filtered and extracted with diethyl ether $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to yield the title compound as a pale yellow oil (0.98 g, 84%) (Found: C, $52.2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 15.2 \%$; ${ }^{+}$, 184.0831 . $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $52.17 ; \mathrm{H}, 6.57 ; \mathrm{N}, 15.21 \% ; M, 184.0848$); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 221$ (5876); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3350$, $2985,2950,1700,1600,1420,1295$ and $1100 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.73\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.03$ $\left(2 \mathrm{H}, \mathrm{s}, J 7, \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ and $4.18\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(68$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.6$ and $14.1\left(\mathrm{CH}_{3}\right), 38.5$ and $60.8\left(\mathrm{CH}_{2}\right), 107.9$, $159.9,162.0$ and $178.2(\mathrm{C}) ; m / z 184\left(\mathrm{M}^{+}\right), 155,137,110$ and 82 (100\%).

Ethyl 5-ethoxycarbonylmethyl-3-methylisoxazole-4-carboxylate 13

Prepared as described above for ethyl 3,5-dimethylisoxazole-4carboxylate 9, but using diethyl 3 -oxopentane-1,5-dioate (36.91 $\mathrm{g}, 0.183 \mathrm{~mol})$ and pyrrolidine $(12.98 \mathrm{~g}, 0.183 \mathrm{~mol})$ in toluene to form the enamine, $\mathrm{Et}_{3} \mathrm{~N}(55.4 \mathrm{~g}, 0.548 \mathrm{~mol}), \mathrm{EtNO}_{2}(15.07 \mathrm{~g}$, $0.2 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(30.78 \mathrm{~g}, 0.2 \mathrm{~mol})$. Workup afforded a brown oil which was fractionally distilled to yield the title compound as a pale yellow oil $\left(19.2 \mathrm{~g}, 44^{\circ} \%\right.$, bp $118-120^{\circ} \mathrm{C}$ at 0.6 mmHg (Found: $\mathrm{MH}^{+}, 242.1052 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires MH , 242.1028); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 218$ (6723); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 2975,2925,1710,1600,1470,1380$ and $1100 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.20 and 1.35 (each $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.15$ and 4.30 (each $\left.2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.7$ and 14.1 $\left(\mathrm{CH}_{3}\right), 33.4,60.8$ and $61.7\left(\mathrm{CH}_{2}\right), 110.3,159.9,161.8,166.9$ and $170.5(\mathrm{C}) ; m / z(\mathrm{FAB}) 242\left(\mathrm{M}^{+}+1,100 \%\right), 196,168,140$ and 82 .

Methyl 5-methoxycarbonylmethyl-3-methylisoxazole-4-carboxylate 14

Prepared as described above for ethyl 3,5-dimethylisoxazole-4carboxylate 9, but using dimethyl 3 -oxopentane-1,5-dioate $(40.0 \mathrm{~g}, 0.229 \mathrm{~mol})$ and pyrrolidine $(16.33 \mathrm{~g}, 0.229 \mathrm{~mol})$ in toluene to form the enamine, $\mathrm{Et}_{3} \mathrm{~N}(68.72 \mathrm{~g}, 0.689 \mathrm{~mol}), \mathrm{EtNO}_{2}$ $(19.0 \mathrm{~g}, 0.252 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(38.64 \mathrm{~g}, 0.252 \mathrm{~mol})$. Workup afforded a brown oil which was fractionally distilled to yield the title compound as a pale yellow oil $(21.30 \mathrm{~g}, 44 \%)$, bp 105$106^{\circ} \mathrm{C}$ at 0.20 mmHg (Found: M^{+}, 213.0667. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{5}$ requires $M, 213.0637$); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 220(5847)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3000,2950,1725,1600,1440,1300$ and 1100 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.43\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.71$ and 3.84 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $11.5\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 51.7$ and $52.5\left(\mathrm{CH}_{3}\right), 110.1,159.7$, 162.7, 170.4 and $175.1(\mathrm{C}) ; m / z(\mathrm{FAB}) 214\left(\mathrm{M}^{+}+1,100 \%\right)$, 182, 154, 72 and 59.

Ethyl 5-carbamoylmethyl-3-methylisoxazole-4-carboxylate 16

To ethyl 5-ethoxycarbonylmethyl-3-methylisoxazole-4-carboxylate $\mathbf{1 3}(1.00 \mathrm{~g}, 4.15 \mathrm{mmol})$ was added an excess of conc. aqueous ammonia ($d=0.88 \mathrm{~kg} \mathrm{~m}^{-3}, 5.0 \mathrm{~cm}^{3}$) and EtOH (3.0 cm^{3}), and the suspension stirred vigorously at room temperature for 14 h . After this period a white solid had precipitated which was filtered and recrystallised (EtOAc) to yield the title compound as a white solid $(0.81 \mathrm{~g}, 92 \%), \mathrm{mp} 141-141.5^{\circ} \mathrm{C}$ (Found: C, 51.1; H, 6.0; N, 13.1\%; $\mathrm{M}^{+}-\mathrm{NH}_{2}, 196.0605$. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $50.94 ; \mathrm{H}, 5.70 ; \mathrm{N}, 13.20 \% ; M-\mathrm{NH}_{2}$, 196.0610); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 218$ (7301); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3410,3300,3200,2975,2950,1720,1630,1600,1430$, 1410,1300 and $1110 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right)$ and 4.26
$\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.2$ and 14.71 $\left(\mathrm{CH}_{3}\right), 35.2$ and $61.6\left(\mathrm{CH}_{2}\right), 110.0,160.6,162.9,168.6$ and 173.7 (C); $m / z 196\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 81 \%\right), 169,141$ and 82.

Ethyl 5-(N-methylcarbamoylmethyl)-3-methylisoxazole-4-carboxylate 17

Prepared as described above for ethyl 5-carbamoylmethyl-3-methylisoxazole-4-carboxylate $\mathbf{1 6}$ but using 5-ethoxycarbonyl-methyl-3-methylisoxazole-4-carboxylate 13 ($1.00 \mathrm{~g}, 4.15 \mathrm{mmol}$) and methylamine in toluene ($30 \% \mathrm{w} / \mathrm{v}, 10.0 \mathrm{~cm}^{3}$), to yield the title compound as a white solid ($0.93 \mathrm{~g}, 99^{\circ}$), mp $143.5-144^{\circ} \mathrm{C}$ (Found: C, 53.1; H, 6.3; N, 12.4\%; $\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}, 169.0753$. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $53.09 ; \mathrm{H}, 6.24 ; \mathrm{N}, 12.38 \% ; M-\mathrm{C}_{2}-$ $\mathrm{H}_{3} \mathrm{NO}, 169.0739$); $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 216$ (7584); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3290,2975,2925,1710,1620,1600,1460,1400$ and 1110; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.85\left(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{NHCH}_{3}\right), 4.00(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.45\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $6.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.N H \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.7,14.0$ and $26.5\left(\mathrm{CH}_{3}\right), 35.2$ and $61.1\left(\mathrm{CH}_{2}\right), 110.0,159.9,162.4,166.1$ and $171.8(\mathrm{C}) ; ~ m / z$ $169\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}, 100 \%\right), 141,123,82$ and 58.

5-(Carboxymethyl)-3-methylisoxazole-4-carboxylic acid 15

Ethyl 5-ethoxycarbonylmethyl-3-methylisoxazole-4-carboxylate $\mathbf{1 3}(5.35 \mathrm{~g}, 22.17 \mathrm{mmol})$ was heated at reflux with NaOH $(0.9 \mathrm{~g}, 22.17 \mathrm{mmol})$ in water $\left(75 \mathrm{~cm}^{3}\right)$ for 4.5 h . After this time the solution was cooled, filtered and acidified carefully to pH 1 with conc. hydrochloric acid. The precipitate was filtered and washed with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ to yield the title compound as a white solid ($3.97 \mathrm{~g}, 97 \%$), mp 199-200 ${ }^{\circ} \mathrm{C}$ (Found: C, $45.6 ; \mathrm{H}$, 3.6; $\mathrm{N}, 7.8 \% . \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{5}$ requires $\mathrm{C}, 45.41 ; \mathrm{H}, 3.81 ; \mathrm{N}, 7.57 \%$); $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 217$ (6491); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3180-$ $2900,1740,1700,1610,1460$ and $1110 ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right) \mathrm{SO}\right]$ $2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right)$ and $13.1(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{OH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.6\left(\mathrm{CH}_{3}\right), 33.4\left(\mathrm{CH}_{2}\right), 110.6$, 160.0, 163.2, 168.9 and $171.7(\mathrm{C}) ; m / z 141\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{H}\right), 123$, 82 and 43 (100%).

3-Methyl-4,6-dioxo-6,7-dihydro-4H-pyrano[3,4-d]isoxazole 20

To 5-(Carboxymethyl)-3-methylisoxazole-4-carboxylic acid $\mathbf{1 5}$ $(1.0 \mathrm{~g}, 5.4 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added DCC ($1.12 \mathrm{~g}, 5.4$ mmol) in THF ($20 \mathrm{~cm}^{3}$), and the mixture stirred at room temperature for 8 h . After this time the mixture was filtered and evaporated under reduced pressure to yield the title compound as an off-white solid ($0.72 \mathrm{~g}, 80 \%$), mp $140-143{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 167.0194. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$ requires $\left.M, 167.0211\right) ; \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$) 209 (10440); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2938,1825,1782$, 1638, 1461, 1045 and 748; $\delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right) \mathrm{CO}\right] 2.40(3 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{CH}_{3}\right)$ and $4.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.2$ $\left(\mathrm{CH}_{3}\right), 38.6\left(\mathrm{CH}_{2}\right), 110.2,159.6,162.9,168.6$ and $171.3(\mathrm{C}) ; m / z$ $167\left(\mathrm{M}^{+}\right), 126,82(100 \%)$ and 81.

Ethyl 4-phthalimido-3-oxobutanoate 21

To phthalimidoacetic acid ($30.0 \mathrm{~g}, 146.22 \mathrm{mmol}$) in dry THF ($200 \mathrm{~cm}^{3}$) was added $1,1^{\prime}$-carbonyldiimidazole ($23.71 \mathrm{~g}, 146.22$ mmol) and the solution stirred under nitrogen at room temperature for 12 h to form the acid imidazolide. To ethyl hydrogen malonate ($19.32 \mathrm{~g}, 146.22 \mathrm{mmol}$) in dry THF $\left(150 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added over 0.5 h propan-2-ylmagnesium bromide, prepared from magnesium turnings ($7.00 \mathrm{~g}, 293.0 \mathrm{mmol}$) and 2-bromopropane ($36.0 \mathrm{~g}, 293.0 \mathrm{mmol}$), in dry THF ($200 \mathrm{~cm}^{3}$). After stirring at room temperature for 0.5 h and warming to $40^{\circ} \mathrm{C}$ for 0.5 h , the solution was cooled to $0^{\circ} \mathrm{C}$ and the imidazolide solution added. The resultant gummy precipitate was stirred vigorously at room temperature for 4 h , before 0.3 m orthophosphoric acid $\left(800 \mathrm{~cm}^{3}\right)$ was carefully added and the mixture extracted with EtOAc ($3 \times 600 \mathrm{~cm}^{3}$). The combined organic extracts were washed with saturated aqueous NaHCO_{3}
$\left(800 \mathrm{~cm}^{3}\right)$ and saturated brine $\left(800 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield the title compound as a white solid ($39.71 \mathrm{~g}, 99 \%$), $\mathrm{mp} 110.5-111^{\circ} \mathrm{C}$ (Found: C, 61.2; $\mathrm{H}, 4.7$; N, $5.0 \% . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}$ requires $\mathrm{C}, 61.09 ; \mathrm{H}, 4.76$; N, $5.09 \%) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 218$ (35296); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2975,2945,1720,1600,1400,1270,1080$ and $1015 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.55$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.65(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2}\right), 7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.80(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}}(68 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{CH}_{3}\right), 46.6,46.9$ and $61.8\left(\mathrm{CH}_{2}\right), 123.6(\mathrm{CH})$, 131.9 (C), 134.3 (CH), 166.2, 167.4 and 194.9 (C); m/z (FAB) $276\left(\mathrm{M}^{+}+1\right), 230(100 \%), 160,137$ and 77.

Ethyl 5-phthalimidomethyl-3-methylisoxazole-4-carboxylate 11 (by direct cycloaddition)

Prepared as described above for ethyl 3,5-dimethylisoxazole-4carboxylate 9 , but using ethyl 4 -phthalimido-3-oxobutanoate $21(35.74 \mathrm{~g}, 0.13 \mathrm{~mol})$ and pyrrolidine $(9.23 \mathrm{~g}, 0.13 \mathrm{~mol})$ in toluene to form the enamine, $\mathrm{Et}_{3} \mathrm{~N}(43.41 \mathrm{~g}, 0.429 \mathrm{~mol}), \mathrm{EtNO}_{2}$ $(10.74 \mathrm{~g}, 0.143 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(22.0 \mathrm{~g}, 0.143 \mathrm{~mol})$. Workup afforded an orange oil which was purified by column chromatography on silica gel, eluting with light petroleum (bp 40$\left.60^{\circ} \mathrm{C}\right)-\mathrm{EtOAc}(1: 1 \mathrm{v} / \mathrm{v})$ to yield the title compound as a white solid ($17.42 \mathrm{~g}, 43 \%$) $\mathrm{mp} 95.5-97^{\circ} \mathrm{C}$, identical to a sample prepared by bromide substitution, see above.

Ethyl 4-benzyloxycarbonylamino-3-oxobutanoate 23

Prepared as described above for the preparation of ethyl 4-phthalimido-3-oxobutanoate 21, but using N-benzyloxycarbonylglycine 22 ($50.0 \mathrm{~g}, 239.0 \mathrm{mmol}$), 1,1'-carbonyldiimidazole $(38.8 \mathrm{~g}, 239.0 \mathrm{mmol})$, ethyl hydrogen malonate ($34.74 \mathrm{~g}, 263.0$ mmol), magnesium ($11.4 \mathrm{~g}, 480.0 \mathrm{mmol}$) and 2-bromopropane $(60.0 \mathrm{~g}, 420.0 \mathrm{mmol})$, to yield the title compound as an orange oil ($58.56 \mathrm{~g}, 88 \%$) (Found: C, 59.9; H, 6.1; N, 5.1\%. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{C}, 60.20 ; \mathrm{H}, 6.14 ; \mathrm{N}, 5.02 \%) ; \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ cm^{-1}) 208 (5208); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3360,3033,2981,1720,1522$, 1454, 1368, 1320, 1252, 1162, 1027, 915, 776 and 698; $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.50(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{2} \mathrm{CO}\right), 4.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right.$ $\left.\mathrm{CH}_{3}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.34(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.8\left(\mathrm{CH}_{3}\right), 46.0,50.7,61.0$ and $66.6\left(\mathrm{CH}_{2}\right), 127.7,127.8$ and $128.1(\mathrm{CH}), 136.0,156.1,166.4$ and $198.5(\mathrm{C}) ; m / z(\mathrm{FAB}) 280(\mathrm{M}+1), 235$ and 91 (100%).

Ethyl 5-benzyloxycarbonylaminomethyl-3-methylisoxazole-4carboxylate 24

Prepared as described above for ethyl 3,5-dimethylisoxazole-4carboxylate 9, but using ethyl 4-benzyloxycarbonylamino-methyl-3-oxobutanoate $23(50.0 \mathrm{~g}, 0.179 \mathrm{~mol})$ and pyrrolidine $(12.74 \mathrm{~g}, 0.179 \mathrm{~mol})$ in toluene to form the enamine, $\mathrm{Et}_{3} \mathrm{~N}$ $(54.34 \mathrm{~g}, 0.537 \mathrm{~mol}), \mathrm{EtNO}_{2}(14.78 \mathrm{~g}, 0.197 \mathrm{~mol})$ and POCl_{3} ($30.21 \mathrm{~g}, 0.197 \mathrm{~mol}$). Workup and column chromatography on silica gel eluting with light petroleum (bp $40-60^{\circ} \mathrm{C}$)-EtOAc ($1: 1 \mathrm{v} / \mathrm{v}$) afforded the title compound as a pale cream solid (16.51 g, 30\%), mp 66-68 ${ }^{\circ} \mathrm{C}$ (Found: C, $60.3 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.7 \%$; MH^{+}, 319.1338. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 60.37 ; \mathrm{H}, 5.70 ; \mathrm{N}$, $8.80 \% ; M H, 319.1294) ; \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 209$ (10440); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3022,1722,1613,1498,1300,1108$ and $972 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.44$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.76(2 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{NHCH}_{2}\right), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.57(1 \mathrm{H}, \mathrm{br}$ s, NH) and 7.35 $(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5$ and $14.2\left(\mathrm{CH}_{3}\right), 37.4$, 60.9 and $67.0\left(\mathrm{CH}_{2}\right), 109.0(\mathrm{C}), 128.0$ and $128.2(\mathrm{CH}), 136.0$, 156.1, 159.8, 161.8 and $173.7(\mathrm{C}) ; m / z 319\left(\mathrm{MH}^{+}\right), 211$ and 91 (100\%).

Ethyl 5-aminomethyl-3-methylisoxazole-4-carboxylate 12 (from the N-benzyloxycarbonyl derivative)

Ethyl 5-benzyloxycarbonylaminomethyl-3-methylisoxazole-4-
carboxylate $24(2.0 \mathrm{~g}, 6.36 \mathrm{mmol})$ was treated with HBr in glacial acetic acid ($33 \% \mathrm{w} / \mathrm{v}, 1.7 \mathrm{~g}, 6.93 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$ for 4 h . To this was added dry diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$ and the precipitate collected by filtration and washed with dry diethyl ether ($3 \times 30 \mathrm{~cm}^{3}$) to afford the hydrobromide salt $\mathbf{2 6}$ as a pale brown solid ($5.41 \mathrm{~g}, 86 \%$). To this salt was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.4 \mathrm{~g}, 22.44$ mmol) in water ($75 \mathrm{~cm}^{3}$) and the mixture stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was then extracted with $\mathrm{CHCl}_{3}\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate evaporated under reduced pressure to leave the title compound as a pale yellow oil ($2.97 \mathrm{~g}, 72 \%$), identical to a sample prepared from the phthalimido derivative $\mathbf{1 1}$.

5-Benzyloxycarbonylaminomethyl-3-methylisoxazole-4-carboxylic acid 27

Ethyl 5-benzyloxycarbonylaminomethyl-3-methylisoxazole-4carboxylate 24 ($3.70 \mathrm{~g}, 11.63 \mathrm{mmol}$) was treated with NaOH $(0.47 \mathrm{~g}, 11.63 \mathrm{mmol})$ in water $\left(25 \mathrm{~cm}^{3}\right)$ at reflux for 4 h . The mixture was cooled, washed with $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and the aqueous layer acidified to pH 3 with conc. hydrochloric acid. The precipitate was filtered under suction, dissolved in CHCl_{3} and the solution dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield the title compound as a pale cream solid (2.48 g, 73%), mp 171-172 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.9 ; H, 4.8; N, 9.5%; $\mathrm{M}^{+}, 290.0860 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, $57.93 ; \mathrm{H}, 4.86 ; \mathrm{N}, 9.65 \%$; M, 290.0919); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 211$ (11120); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3311\left(\mathrm{v}\right.$ br), 1741, 1697 and 1275; $\delta_{\mathrm{H}}[250$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.35\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{NHCH}_{2}\right)$, $5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 7.35(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$ and $8.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left[68 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 11.2\left(\mathrm{CH}_{3}\right), 37.1$ and $65.74\left(\mathrm{CH}_{2}\right)$, 108.7 (C), 127.8, 127.9 and 128.4 (CH), 136.8, 156.3, 159.7, 162.9 and $174.1(\mathrm{C}) ; m / z 290\left(\mathrm{M}^{+}\right), 109$ and 91 (100%).

3-Methyl-5,6-dihydro-4H-pyrrolo[3,4-d]isoxazol-4-one hydrobromide 28

To 5-benzyloxycarbonylaminomethyl-3-methylisoxazole-4carboxylic acid $27(2.3 \mathrm{~g}, 7.94 \mathrm{mmol})$ in THF ($50 \mathrm{~cm}^{3}$) was added $\mathrm{Et}_{3} \mathrm{~N}(0.85 \mathrm{~g}, 8.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred for 10 min , before ethyl chloroformate $(0.91 \mathrm{~g}, 8.4 \mathrm{mmol})$ was added dropwise and the suspension stirred a further 12 h at $20^{\circ} \mathrm{C}$. After this period the mixture was filtered and the solvent evaporated under reduced pressure to yield the mixed anhydride, which was used directly; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.40(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.65\left(2 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CH}_{2} \mathrm{NH}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right)$, $5.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.40(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$.
To the mixed anhydride was added HBr in glacial acetic acid $(33 \% \mathrm{w} / \mathrm{v}, 0.7 \mathrm{~g}, 8.4 \mathrm{mmol})$ and the mixture stirred a further 16 h. Dry diethyl ether was then added ($30 \mathrm{~cm}^{3}$) and the precipitate filtered under suction, washed with dry diethyl ether $(3 \times 30$ $\left.\mathrm{cm}^{3}\right)$ and dried to yield the title compound ($1.4 \mathrm{~g}, 80 \%$) as an off-white solid, mp 270-272 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{HBr}, 138.0422$. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$ requires $\left.M-\mathrm{HBr}, 138.0429\right) ; \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$) 213 (3929); $v_{\max }\left(\right.$ Nujol) $/ \mathrm{cm}^{-1} 1747,1604,1575$, 1516, 1305, 1227, 1115, 1075, 865 and 734; $\delta_{\mathrm{H}}[400 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.58\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NH}\right)$ and 8.50 $(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}) ; \delta_{\mathrm{C}}\left[125 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 11.3\left(\mathrm{CH}_{3}\right), 34.5$ $\left(\mathrm{CH}_{2}\right), 111.1,160.1,162.6$ and $169.4(\mathrm{C}) ; m / z 138\left(\mathrm{M}^{+}-\mathrm{HBr}\right)$, $128,110,80(100 \%), 79$ and 52.

3-(1-Hydroxyethylidene)pyrrolidine-2,4-dione (3-acetyltetramic acid) 29

3-Methyl-5,6-dihydro-4 H -pyrrolo[3,4- d]isoxazol-4-one hydrobromide $28(170 \mathrm{mg}, 0.776 \mathrm{mmol})$ and palladium on charcoal $(10 \% \mathrm{Pd}, 0.50 \mathrm{mg})$ were stirrred together in $\operatorname{EtOH}\left(30 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ under hydrogen (1 atm) until 1 equiv. of hydrogen (18.63 $\mathrm{cm}^{3}, 0.776 \mathrm{mmol}$) had been absorbed. The mixture was then filtered through kieselgühr and the filtrate evaporated under
reduced pressure to yield a white solid. To this was added 2 m aqueous $\mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 3 h before acidification to pH 1 with conc. hydrochloric acid. The precipitate was collected by filtration to yield the title compound as a white solid ($100 \mathrm{mg}, 91 \%$), mp 156-158 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{45} 155^{\circ} \mathrm{C}$) (Found: C, 50.7; H, 4.9; N, $9.5 \% ; \mathrm{M}^{+}$, 141.0404. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{3}$ requires C, $51.07 ; \mathrm{H}, 5.00 ; \mathrm{N}, 9.92 \% ; M, 141.0426) ; \lambda_{\text {max }} / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 275$ (11053); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 3210,1712$, 1459 and $962 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 2.65(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right)$ and $4.20\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 20.5$ $\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{2}\right), 97.8,110.7,167.9$ and $196.5(\mathrm{C}) ; m / z 141$ $\left(\mathrm{M}^{+}, 100 \%\right), 126,113$ and 84.

5-Benzoyl-3-methyl-5,6-dihydro-4H-pyrrolo[3,4-d] isoxazol-4one 35

To 3-methyl-5,6-dihydro-4H-pyrrolo[3,4- d]isoxazol-4-one hydrobromide $28(25 \mathrm{mg}, 0.02 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under nitrogen was added n-butyllithium (1.6 m solution in hexanes, $72 \mu 1,0.02 \mathrm{mmol}$). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before the dropwise addition of $\mathrm{PhCOCl}(15 \mu \mathrm{l}$, 0.022 mmol), and then for a further 4 h whilst being allowed to warm to $20^{\circ} \mathrm{C}$. The mixture was then added to saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(2 \mathrm{~cm}^{3}\right)$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield the title compound (15.5 $\mathrm{mg}, 56 \%$) as a white solid, $\mathrm{mp} 157-159^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-$ PhCO, 137.0332. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{M}-\mathrm{PhCO}, 137.0351$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2385,1707,1666$ and $1126 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.50-7.92$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 11.6\left(\mathrm{CH}_{3}\right), 37.5\left(\mathrm{CH}_{2}\right)$, $110.4(\mathrm{C}), 128.4,129.6$ and $133.0(\mathrm{CH}), 161.7,164.7,175.3$ and $197.5(\mathrm{C}) ; m / z 137$ (M^{+}- PhCO), 105 (PhCO, 100\%) and 91.

Ethyl 5-benzyloxycarbonylamino-3-oxopentanoate 37

Prepared as described for the preparation of ethyl 4-phthal-imido-3-oxobutanoate 21, but using N-benzyloxycarbonyl- β alanine 36 ($30.0 \mathrm{~g}, 134.0 \mathrm{mmol}$), 1,1'-carbonyldiimidazole (21.8 $\mathrm{g}, 134.0 \mathrm{mmol})$, ethyl hydrogen malonate ($19.5 \mathrm{~g}, 147.0 \mathrm{mmol}$), magnesium ($6.43 \mathrm{~g}, 268.0 \mathrm{mmol}$) and 2-bromopropane (33.0 g , $268.0 \mathrm{mmol})$, to yield the title compound ($35.6 \mathrm{~g}, 91 \%$) as a yellow oil (Found: C, 61.2; H, 6.6; N, 4.9\%. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C, $61.42 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.78 \%) ; \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 208$ (6492); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3353,3032,2981,1715,1526,1454$ and $1248 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.80$ $\left(2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 3.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 3.44(2 \mathrm{H}, \mathrm{t}$, $\left.J 6, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.08(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 5.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.34(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 13.9\left(\mathrm{CH}_{3}\right), 35.2,42.4,48.8,61.1$ and $66.2\left(\mathrm{CH}_{2}\right), 127.7$, 127.8 and $128.2(\mathrm{CH}), 136.2,156.1,166.7$ and $201.9(\mathrm{C}) ; \mathrm{m} / \mathrm{z}$ (FAB) $294\left(\mathrm{M}^{+}+1\right), 250,204,120$ and $91(100 \%)$.

Ethyl 5-(2-benzyloxycarbonylaminoethyl)-3-methylisoxazole-4carboxylate 38

Prepared as described above for ethyl 3,5-dimethylisoxazole-4carboxylate 9, but using ethyl 5-benzyloxycarbonylamino-3-oxopentanoate $37(44.76 \mathrm{~g}, 0.153 \mathrm{~mol}$) and pyrrolidine (10.85 $\mathrm{g}, 0.153 \mathrm{~mol})$ in toluene to form the enamine, $\mathrm{Et}_{3} \mathrm{~N}(46.36 \mathrm{~g}$, $0.459 \mathrm{~mol}), \mathrm{EtNO}_{2}(12.63 \mathrm{~g}, 0.168 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(25.81 \mathrm{~g}$, 0.168 mol). Workup afforded an orange oil which was purified by column chromatography on silica gel, eluting with light petroleum (bp $40-60^{\circ} \mathrm{C}$)-EtOAc ($1: 1 \mathrm{v} / \mathrm{v}$) to yield the title compound ($35.73 \mathrm{~g}, 68 \%$) as a pale yellow oil (Found: C, 61.4; $\mathrm{H}, 6.1 ; \mathrm{N}, 8.2 \% ; \mathrm{M}^{+}, 332.1356 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 61.44$; $\mathrm{H}, 6.07 ; \mathrm{N}, 8.43 \% ; M, 332.1372) ; \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ 210 (10200); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3346,3064,3032,1720,1607,1531$, $1455,1374,1301,1244$ and 1106; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.30$ and 3.60 (each $\left.2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 4.35\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.10(2 \mathrm{H}$, $\mathrm{s}, \mathrm{PhCH} 2), 5.25(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$ and $7.35(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}$;
$\left.\mathrm{CDCl}_{3}\right) 11.5$ and $13.9\left(\mathrm{CH}_{3}\right), 27.8,38.4,60.6$ and $66.4\left(\mathrm{CH}_{2}\right)$, 109.2 (C), 127.8, 128.0 and 128.2 (CH), 136.2, 156.1, 159.7, 162.0 and $175.5(\mathrm{C}) ; m / z 332\left(\mathrm{M}^{+}\right)$, 225, 169 and 91 (100%).

Ethyl 5-(2-aminoethyl)-3-methylisoxazole-4-carboxylate hydrobromide 39

Ethyl 5-(2-benzyloxycarbonylaminoethyl)-3-methylisoxazole-4carboxylate $38(16.54 \mathrm{~g}, 49.8 \mathrm{mmol})$ was treated with HBr in glacial acetic acid ($32 \% \mathrm{w} / \mathrm{v}, 15.11 \mathrm{~cm}^{3}, 59.7 \mathrm{mmol}$) and stirred at room temperature for 4 h . To this was added dry diethyl ether ($80 \mathrm{~cm}^{3}$) and the precipitate was filtered under suction, washed with dry ether $\left(3 \times 40 \mathrm{~cm}^{3}\right)$ and dried to yield the title compound $(12.4 \mathrm{~g}, 90 \%)$ as a pale cream solid, mp $174-176{ }^{\circ} \mathrm{C}$ (Found: C, $38.4 ; \mathrm{H}, 5.5 ; \mathrm{N}, 9.9 ; \mathrm{Br}, 28.5 \% ; \mathrm{M}^{+}-\mathrm{HBr}, 198.1040 . \mathrm{C}_{9} \mathrm{H}_{15^{-}}$ $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{Br}$ requires $\mathrm{C}, 38.73 ; \mathrm{H}, 5.42 ; \mathrm{N}, 10.04 ; \mathrm{Br}, 28.63 \%$; $M-\mathrm{HBr}$, 198.1004); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3399$, 2982, 2700, 1609, $1428,1367,1307,1130$ and $940 ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.47$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.52\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.35$ and 3.55 (each $\left.2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 4.45\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $8.15\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{3}{ }^{+}\right) ; \delta_{\mathrm{C}}\left[68 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 12.0$ and 14.7 $\left(\mathrm{CH}_{3}\right), 25.8,36.6$ and $61.3\left(\mathrm{CH}_{2}\right), 109.9,160.1,162.0$ and 174.3 (C); $m / z 198\left(\mathrm{M}^{+}-\mathrm{HBr}\right), 169(100 \%), 97,82$ and 79.

3-Methyl-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one 8b

To ethyl 5-(2-aminoethyl)-3-methylisoxazole-4-carboxylate hydrobromide 39 ($10.0 \mathrm{~g}, 35.83 \mathrm{mmol}$) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(3.8 \mathrm{~g}, 35.83 \mathrm{mmol})$ in water $\left(100 \mathrm{~cm}^{3}\right)$ and the solution stirred at room temperature for 16 h . The light brown solution was extracted with EtOAc $\left(3 \times 75 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to yield the title compound as an off-white solid ($5.2 \mathrm{~g}, 96 \%$), mp 166-168 ${ }^{\circ} \mathrm{C}$ (Found: C, 55.0; H, 5.35; N, $18.3 \% ; \mathrm{M}^{+}, 152.0580 . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $55.26 ; \mathrm{H}, 5.30 ; \mathrm{N}$, $18.41 \% ; M, 152.0586) ; \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 215$ (3373); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3422,3007,1685,1605,1498,1466,1323$ and $919 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.50\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.07(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 3.67\left(2 \mathrm{H}, \mathrm{dt}, J 7\right.$ and $\left.2.5, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right)$ and 6.02 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.9\left(\mathrm{CH}_{3}\right), 23.3$ and 40.58 $\left(\mathrm{CH}_{2}\right), 109.5,158.0,164.6$ and $174.1(\mathrm{C}) ; m / z 152\left(\mathrm{M}^{+}, 100 \%\right)$, $123(100 \%), 81$ and 67.

5-(2-Benzyloxycarbonylaminoethyl)-3-methylisoxazole-4-carboxylic acid 40

Prepared as described above for 5-benzyloxycarbonylamino-methyl-3-methylisoxazole-4-carboxylic acid 27, but using ethyl 5-(2-benzyloxycarbonylaminoethyl)-3-methylisoxazole-4-carboxylate $38(9.00 \mathrm{~g}, 29.49 \mathrm{mmol})$ and $\mathrm{NaOH}(1.20 \mathrm{~g}, 29.24$ mmol) in water $\left(100 \mathrm{~cm}^{3}\right)$. The cooled solution was filtered, carefully acidified to pH 1 (conc. hydrochloric acid), and the precipitate collected and washed with diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ to afford the title compound as a white solid $(7.65 \mathrm{~g}, 86 \%), \mathrm{mp}$ $165-167{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 304.1078 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires M, 304.1059); $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 208$ (1538); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3309,1682,1606,1548$ and $1121 ; \delta_{\mathrm{H}}[250 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 2.45\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.30$ and 3.60 (each $2 \mathrm{H}, \mathrm{t}, J 8$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.25(1 \mathrm{H}$, br s, NH) and $7.20-7.35(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left[68 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 11.4\left(\mathrm{CH}_{3}\right), 27.6$, 39.3 and $65.3\left(\mathrm{CH}_{2}\right), 109.3(\mathrm{C}), 127.7,128.4$ and $134.1(\mathrm{CH})$, $137.2,156.1,159.6,163.2$ and $175.7(\mathrm{C}) ; m / z 304\left(\mathrm{M}^{+}\right), 169,100$ and 91 (100%).

3-Methyl-4,5,6,7-tetrahydroisoxazolo $[4,5-c$]pyridin-4-one hydrobromide 41

Prepared as described above for 3-methyl-5,6-dihydro-4H-pyrrolo[3,4- d]isoxazol-4-one hydrobromide 28, but using 5-(2-benzyloxycarbonylaminoethyl)-3-methylisoxazole-4-carboxylic acid $40(4.04 \mathrm{~g}, 13.28 \mathrm{mmol})$ in THF $\left(75 \mathrm{~cm}^{3}\right)$, N-methylmorpholine ($1.34 \mathrm{~g}, 13.28 \mathrm{mmol}$) as tertiary amine, ethyl chloro-
formate $(1.44 \mathrm{~g}, 13.28 \mathrm{mmol})$ and HBr in glacial acetic acid ($33 \% \mathrm{w} / \mathrm{v}, 3.30 \mathrm{~cm}^{3}, 13.28 \mathrm{mmol}$), to yield the title compound ($1.92 \mathrm{~g}, 62 \%$) as a pale buff solid, mp 194-197 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{HBr}, 152.0585$. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$ requires $M-\mathrm{HBr}$, 152.0586); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 216$ (4544); $v_{\max }($ Nujol) $)$ $\mathrm{cm}^{-1} 3380,1745,1605,1268$ and $929 ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $2.40\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.20$ and 3.50 (each $2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}$), $5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $8.20(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{NH}) ; \delta_{\mathrm{C}}\left[68 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 11.8\left(\mathrm{CH}_{3}\right), 25.5$ and 36.5 $\left(\mathrm{CH}_{2}\right), 110.2,159.9,163.4$ and $173.8(\mathrm{C}) ; m / z 152\left(\mathrm{M}^{+}-\mathrm{HBr}\right)$, 141 and $23(100 \%)$.

5-tert-Butoxycarbonyl-3-methyl-4,5,6,7-tetrahydroisoxazolo-[4,5-c]pyridin-4-one 42

To 3-methyl-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one $\mathbf{8 b}$ $(0.5 \mathrm{~g}, 3.28 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right) \mathrm{at}-78{ }^{\circ} \mathrm{C}$ under nitrogen was added n -butyllithium (1.5 m in hexanes, $2.20 \mathrm{~cm}^{3}$, 3.28 mmol) and the mixture stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h before the addition of di-tert-butyl dicarbonate $(0.79 \mathrm{~g}, 3.61 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$. After stirring at room temperature for 3 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(30 \mathrm{~cm}^{3}\right)$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a yellow oil which was purified by column chromatography on silica gel eluting with a solvent gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(98: 2 \mathrm{v} / \mathrm{v}$) to afford the title compound as a white solid ($0.572 \mathrm{~g}, 69 \%$), mp $30^{\circ} \mathrm{C}$ (Found: C, 57.1; $\mathrm{H}, 6.5 ; \mathrm{N}, 10.8 \% ; \mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{CMe}_{3}, 152.0570 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $57.13 ; \mathrm{H}, 6.39 ; \mathrm{N}, 11.10 \% ; M H-\mathrm{CO}_{2} \mathrm{CMe}_{3}$, 152.0586); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1764,1715,1369,1318,1297$, 1130 and 1073; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.56\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.50$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.08$ and 4.16 (each $2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{NCH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}(68$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.5\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{2}\right), 28.1\left(3 \times \mathrm{CH}_{3}\right), 44.2$ $\left(\mathrm{CH}_{2}\right), 83.5,110.7,152.5,158.0,160.3$ and $175.6(\mathrm{C}) ; \mathrm{m} / \mathrm{z} 152$ $\left(\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{CMe}_{3}\right)$ and 57 (100%).

3-Methyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]-pyridin-4-one 43

n-Butyllithium (1.6 m in hexanes, $9.10 \mathrm{~cm}^{3}, 14.50 \mathrm{mmol}$) was added dropwise to a solution of diisopropylamine $\left(2.10 \mathrm{~cm}^{3}\right.$, $14.50 \mathrm{mmol})$ in dry THF $\left(40 \mathrm{~cm}^{3}\right)$ stirred at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The resultant solution was stirred for 20 min , cooled to $-78^{\circ} \mathrm{C}$, and 3-methyl-4,5,6,7-tetrahydroisoxazolo-[4,5-c]pyridin-4-one $\mathbf{8 b}(1.00 \mathrm{~g}, 6.57 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ was added. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 2 h , phenylselenenyl chloride ($1.26 \mathrm{~g}, 6.57 \mathrm{mmol}$) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture stirred at $20^{\circ} \mathrm{C}$ for 1.5 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(30 \mathrm{~cm}^{3}\right)$ was then added and the mixture extracted with chloroform ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a brown oil which was purified by column chromatography on silica gel eluting with light petroleum (bp $40-60^{\circ} \mathrm{C}$)-EtOAc $(1: 2 \mathrm{v} / \mathrm{v})$ to yield the title compound as a pale beige solid $(1.60 \mathrm{~g}$, 79%), mp 164-165 ${ }^{\circ} \mathrm{C}$ (Found: C, $50.8 ; \mathrm{H}, 3.9 ; \mathrm{N}, 9.1 \% ; \mathrm{M}^{+}$, 308.0070. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ Se requires C, $50.83 ; \mathrm{H}, 3.94 ; \mathrm{N}, 9.12 \%$; $M, 308.0064) ; \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 221$ (13159); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3421,1682,1603,1580,1490,1305,1159$ and 999; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.42\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.74(1 \mathrm{H}$, ddd, $J 14,5$ and $3, \mathrm{CHC} H \mathrm{HNH}), 4.18(1 \mathrm{H}$, ddd, $J 14,5$ and 1 , CHCHHNH), 4.56 (1 H, dd, $J 5$ and 3, CHCHH), $6.29(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{NH})$ and $7.25-7.59(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.4$ $\left(\mathrm{CH}_{3}\right), 31.6(\mathrm{CH}), 47.9\left(\mathrm{CH}_{2}\right), 109.4(\mathrm{C}), 126.1(\mathrm{CH}), 129.1$ $(\mathrm{CH}), 136.5(\mathrm{CH}), 158.1(\mathrm{C}), 163.0(\mathrm{C})$ and $174.1(\mathrm{C}) ; m / z 308$ $\left(\mathrm{M}^{+}\right), 151(100 \%), 91$ and 77.

3-Methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 19

3-Methyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyr-idin-4-one 43 ($1.00 \mathrm{~g}, 3.85 \mathrm{mmol}$) was treated with aqueous hydrogen peroxide ($30 \% \mathrm{w} / \mathrm{v}, 1.35 \mathrm{~cm}^{3}, 15.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$
followed by glacial acetic acid $\left(0.95 \mathrm{~cm}^{3}\right)$ and water $\left(0.60 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $0^{\circ} \mathrm{C}$ for 0.5 h and at $20^{\circ} \mathrm{C}$ for 2 h . After this period the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 200 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were washed with saturated brine ($200 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield the title compound as a white solid ($0.45 \mathrm{~g}, 92 \%$), mp $215-218{ }^{\circ} \mathrm{C}$ (Found: C, $55.6 ; \mathrm{H}, 3.9 ; \mathrm{N}$, $18.4 \% ; \mathrm{M}^{+}, 150.0425 . \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $56.00 ; \mathrm{H}, 4.03$; $\mathrm{N}, 18.66 \% ; M, 150.0429) ; \lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 279.2$ (1627); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3043,2399,1681,1424,1204$ and 1044; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.66\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 6.61$ and 7.41 (each $1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}=\mathrm{C} H \mathrm{NH})$ and $11.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(68$ MHz; $\left.\mathrm{CDCl}_{3}\right) 10.8\left(\mathrm{CH}_{3}\right), 94.3(\mathrm{CH}), 110.0(\mathrm{C}), 135.7(\mathrm{CH})$, 157.0, 161.4 and $171.0(\mathrm{C}) ; m / z 150\left(\mathrm{M}^{+}, 100 \%\right)$.

7-Bromo-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 44

To 3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 19 (0.045 $\mathrm{g}, 0.270 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(2 \mathrm{~cm}^{3}\right)$ was added bromine (0.015 $\left.\mathrm{cm}^{3}, 0.270 \mathrm{mmol}\right)$ in $\mathrm{CHCl}_{3}\left(1 \mathrm{~cm}^{3}\right)$ over 0.5 h . The yellow solution was stirred 0.75 h before treatment with $\mathrm{Et}_{3} \mathrm{~N}(0.110 \mathrm{~g}$, 1.06 mmol) and stirring a further 20 h at $20^{\circ} \mathrm{C}$. After this time, saturated aqueous sodium hydrogen carbonate ($4 \mathrm{~cm}^{3}$) was added and the mixture extracted with $\mathrm{CHCl}_{3}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a brown solid, purified by flash column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}(96: 4 \mathrm{v} / \mathrm{v})$ to yield the title compound as an off-white solid ($0.042 \mathrm{~g}, 62 \%$), $\mathrm{mp} 226-228^{\circ} \mathrm{C}$ (Found: C, 36.2; H, 2.2; $\mathrm{N}, 12.0 \% ; \mathrm{M}^{+}, 227.9539$ and 229.9519. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$ requires C, $36.59 ; \mathrm{H}, 2.20 ; \mathrm{N}, 12.23 \% ; M, 227.9350$ and 229.9514); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1673,1606,1496,1300,1268,1210,1082,940$, 869, 740 and $634 ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.50\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right)$ and $7.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{C}}\left[68 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 10.7\left(\mathrm{CH}_{3}\right), 82.4$ and 109.4 (C), 138.4 (CH), 158.3, 158.4 and $168.0(\mathrm{C}) ; m / z 228$ and $230\left(\mathrm{M}^{+}, 100 \%\right), 149,81$ and 79.

7-Iodo-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 45

Method A. 3-Methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4one $19(0.010 \mathrm{~g}, 0.066 \mathrm{mmol})$ in CHCl_{3}-pyridine ($1: 1 \mathrm{v} / \mathrm{v}, 0.5$ cm^{3}) under a nitrogen atmosphere was treated with $\mathrm{I}_{2}(0.068 \mathrm{~g}$, $0.53 \mathrm{mmol})$ in CHCl_{3}-pyridine $\left(1: 1 \mathrm{v} / \mathrm{v}, 0.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the brown solution stirred for a further 36 h at $20^{\circ} \mathrm{C}$. The mixture was then diluted with diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$, and washed with water ($2 \mathrm{~cm}^{3}$), 2 m hydrochloric acid ($2 \times 2 \mathrm{~cm}^{3}$), water ($2 \mathrm{~cm}^{3}$) and aqueous sodium thiosulfate $\left(2 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to leave a brown solid purified by flash column chromatography on silica gel eluting with EtOAc to yield the title compound as a white solid $(0.007 \mathrm{~g}, 40 \%), \mathrm{mp} 129-132{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 275.9401 . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}$ requires $M, 275.9396$); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3583,1697,1588,1556,1288,1185,1069,859$, 803, 777 and $722 ; \delta_{\mathrm{H}}\left[400 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.48\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right)$, $7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $11.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}[100 \mathrm{MHz}$; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 10.7\left(\mathrm{CH}_{3}\right), 49.8$ and $108.5(\mathrm{C}), 142.5(\mathrm{CH}), 158.1$, 158.5 and $170.4(\mathrm{C}) ; m / z 276\left(\mathrm{M}^{+}, 100 \%\right)$ and $149\left(\mathrm{M}^{+}-\mathrm{I}\right)$.

Method B. To 3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4one $19(0.52 \mathrm{~g}, 3.50 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and dry $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ under nitrogen, was added $\mathrm{ICl}(1.0 \mathrm{~m}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.2 \mathrm{~cm}^{3}, 5.18 \mathrm{mmol}$) and the reaction mixture was stirred for 16 h . The precipitate was collected and washed with a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the title compound $(0.41 \mathrm{~g}$, 43%) as a white solid, identical with material prepared by Method A (see above).

7-(4-Methoxyphenyl)-3-methyl-4,5-dihydroisoxazolo[4,5-c]-pyridin-4-one 47

7-Iodo-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 45 ($23 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dry THF ($5 \mathrm{~cm}^{3}$) was treated with
tris(dibenzylideneacetone)dipalladium ($3.9 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $\mathrm{AsPh}_{3}(5 \mathrm{mg}, 0.016 \mathrm{mmol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture stirred at $20^{\circ} \mathrm{C}$ for 10 min , until the deep red solution turned straw coloured. (4-Methoxyphenyl)tributyltin 46 (37 $\mathrm{mg}, 0.092 \mathrm{~mol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ was then added and the mixture heated under reflux for 9 h . Evaporation under reduced pressure afforded a residue purified by column chromatography on silica gel eluting with light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-EtOAc ($1: 2 \mathrm{v} / \mathrm{v}$) to yield the title compound as an off-white solid ($17 \mathrm{mg}, 78 \%$), mp $238{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 256.0844 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 256.0848)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3623$ and 1683; $\delta_{\mathrm{H}}\left[400 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.49\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.79(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 6.66 and 7.53 (each $1.26 \mathrm{H}, \mathrm{d}, J 7$, tautomer A), 7.03 and 7.64 (each $0.74 \mathrm{H}, \mathrm{d}, J 8.5$, tautomer B) and $7.61(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} H \mathrm{NH}) ; \delta_{\mathrm{C}}\left[100 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 10.2$ and $55.2\left(\mathrm{CH}_{3}\right), 92.1$ $(\mathrm{CH}), 106.7$ and $108.9(\mathrm{C}), 114.3(\mathrm{CH}), 123.9(\mathrm{C}), 128.0,134.0$ and $137.7(\mathrm{CH}), 156.7,157.1,158.3,158.8,168.8$ and $170.7(\mathrm{C}) ;$ $m / z 256\left(\mathrm{M}^{+}, 100 \%\right), 226,150$ and 76.

7-Ethenyl-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 48

To 7-iodo-3-methyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 45 ($37 \mathrm{mg}, 0.13 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium $(1 \mathrm{mg}, 0.001 \mathrm{mmol})$ and $\mathrm{AsPh}_{3}(2 \mathrm{mg}, 0.0065 \mathrm{mmol})$ under nitrogen was added dry THF $\left(4 \mathrm{~cm}^{3}\right)$ and left to stir at $20^{\circ} \mathrm{C}$ for 5 min , until the red solution became straw coloured. Vinyltributyltin ($47 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added and the reaction mixture left to stir at $20^{\circ} \mathrm{C}$ for 16 h and then at $50^{\circ} \mathrm{C}$ for 1 h . After cooling, the reaction mixture was concentrated under reduced pressure, the residue taken up in acetonitrile ($10 \mathrm{~cm}^{3}$), washed with hexane ($2 \times 10 \mathrm{~cm}^{3}$), concentrated under reduced pressure and purified by column chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(20: 1 \mathrm{v} / \mathrm{v})$ to yield the title compound as a white solid ($18 \mathrm{mg}, 74 \%$), $\mathrm{mp}>230^{\circ} \mathrm{C}$ (Found: M^{+}, 176.0585. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.M, 176.0586\right)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 229$ (8700), 264 (10300) and 299 (3300); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1698,1640,1607,1569,1527,1497,1427,1371$, $1320,1303,1265$ and 1207; $\delta_{\mathrm{H}}\left[400 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.50(3 \mathrm{H}$, s, $\left.3-\mathrm{CH}_{3}\right), 5.30(1 \mathrm{H}, \mathrm{dd}, J 1$ and $11, \mathrm{CH}=\mathrm{CHH}), 5.90(1 \mathrm{H}, \mathrm{dd}$, $J 1$ and $18, \mathrm{CH}=\mathrm{CH} H), 6.63\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.18, \mathrm{C} H=\mathrm{CH}_{2}\right)$, $7.68(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{C} H \mathrm{NH})$ and $11.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}[100$ MHz ; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 10.9\left(\mathrm{CH}_{3}\right), 106.2$ and $109.7(\mathrm{C}), 115.5\left(\mathrm{CH}_{2}\right)$, 129.1 and $137.6(\mathrm{CH}), 157.5,158.9$ and $169.6(\mathrm{C}) ; m / z 176\left(\mathrm{M}^{+}\right.$, 100%), 161, 147, 133, 119, 105 and 67.

3,5-Dimethyl-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one 49

Prepared as described above for 3-methyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c] pyridin-4-one 43, but using n -butyllithium (1.6 m in hexanes, $3.89 \mathrm{~cm}^{3}, 6.22 \mathrm{mmol}$), diisopropylamine ($0.63 \mathrm{~g}, 6.22 \mathrm{mmol}$), 3-methyl-4,5,6,7-tetrahydro-isoxazolo[4,5-c]pyridin-4-one $\mathbf{8 b}(0.86 \mathrm{~g}, 5.65 \mathrm{mmol})$ and iodomethane ($0.40 \mathrm{~cm}^{3}, 6.22 \mathrm{mmol}$) as electrophile. Workup afforded a yellow solid that was purified by flash column chromatography on silica gel eluting with EtOAc-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(3: 1 \mathrm{v} / \mathrm{v})$ to yield the title compound as a pale yellow solid ($0.61 \mathrm{~g}, 65 \%$), mp 90.5-91 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.7; H, 6.0; N, $16.7 \% ; \mathrm{M}^{+}, 166.0740 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 57.82; $\mathrm{H}, 6.07 ; \mathrm{N}$, $16.86 \% ; M, 166.0742) ; \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 218$ (4420); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1667,1611$ and 1326; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.47\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.11$ and 3.70 (each $\left.2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.1\left(\mathrm{CH}_{3}\right), 22.4$ $\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{3}\right), 47.8\left(\mathrm{CH}_{2}\right), 109.6,158.0,162.0$ and 173.2 (C), confirmed by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ COSY; $m / z 166\left(\mathrm{M}^{+}\right)$and 123 (100%).

3,5-Dimethyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]-pyridin-4-one 50

Prepared as described above for 3-methyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one 43, but using n-butyllithium (1.6 m in hexanes, $1.80 \mathrm{~cm}^{3}, 2.85 \mathrm{mmol}$), diisopropylamine ($0.40 \mathrm{~cm}^{3}, 2.85 \mathrm{mmol}$), 3,5-dimethyl-4,5,6,7-tetra-
hydroisoxazolo[4,5-c]pyridin-4-one $49(0.43 \mathrm{~g}, 2.59 \mathrm{mmol})$ and phenylselenenyl chloride ($0.55 \mathrm{~g}, 2.55 \mathrm{mmol}$) as electrophile. Workup afforded a yellow solid that was purified by flash column chromatography on silica gel eluting with EtOAc-light petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$) $(2: 1 \mathrm{v} / \mathrm{v})$ to yield the title compound as a pale beige oil $(0.24 \mathrm{~g}, 38 \%)$ (Found: $\mathrm{M}^{+}, 322.0225$. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ Se requires $M, 322.0220$); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right) 252.5(27246) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1668,1609,1309$ and $1096 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.35\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J 14$ and $3, \mathrm{CHCHH}), 4.12(1 \mathrm{H}, \mathrm{dd}, J 14$ and $5, \mathrm{CHCH} H), 4.50(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3, \mathrm{CHCHH})$ and 7.15-7.45 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.4\left(\mathrm{CH}_{3}\right), 31.2$ $(\mathrm{CH}), 33.5\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{2}\right), 110.2(\mathrm{C}), 126.0,129.2,129.3$ and $136.6(\mathrm{CH}), 158.4,161.0$ and $172.7(\mathrm{C}) ; m / z 322\left(\mathrm{M}^{+}\right)$and 165 (100\%).

3,5,7-Trimethyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo-[4,5-c]pyridin-4-one 51

Prepared as described above for 3-methyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one 43, but using n -butyllithium (1.6 m in hexanes, $0.45 \mathrm{~cm}^{3}, 0.726 \mathrm{mmol}$), diisopropylamine ($0.10 \mathrm{~cm}^{3}, 0.726 \mathrm{mmol}$), 3,5 -dimethyl-7-phenyl-seleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one 50 (0.16 $\mathrm{g}, 0.660 \mathrm{mmol})$ and iodomethane $(0.11 \mathrm{~g}, 0.726 \mathrm{mmol})$ as electrophile, to yield the title compound as an orange oil $(0.14 \mathrm{~g}$, 84\%) (Found: $\mathrm{M}^{+}-\mathrm{SePh}, 179.0821 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}$ requires $M-\mathrm{SePh}, 179.0821$); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 252.5$ (19178); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1682,1550,1320$ and 1122; $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.75\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.95$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.60$ and 4.00 (each $\left.1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{CHH}\right)$ and 7.20-7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.5$ and 22.5 $\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 40.5(\mathrm{C}), 63.0\left(\mathrm{CH}_{2}\right), 103.0$ and $109.5(\mathrm{C})$, $128.0(\mathrm{CH}), 131.2,138.5,158.5,161.5$ and $176.1(\mathrm{C}) ; \mathrm{m} / \mathrm{z} 179$ $\left(\mathrm{M}^{+}-\mathrm{SePh}, 100 \%\right), 77$ and 42.

3,5,7-Trimethyl-4,5-dihydroisoxazolo[4,5-c]pyridin-4-one 52

Prepared as described for 3-methyl-4,5-dihydroisoxazolo[4,5-c]-pyridin-4-one 19, but using 3,5,7-trimethyl-7-phenylseleno-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-4-one $51(0.10 \mathrm{~g}, 0.40$ $\mathrm{mmol})$, aqueous hydrogen peroxide ($30 \% \mathrm{w} / \mathrm{v}, 165 \mathrm{mg}, 1.60$ $\mathrm{mmol})$, glacial acetic acid (50 mg) and water (30 mg) to yield the title compound as a pale yellow solid $(0.68 \mathrm{~g}, 95 \%)$, mp $100-102{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 178.0756. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 178.0742$); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 291.6$ (4358); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1667,1614,1573,1161$ and $1061 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.25\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 2.65\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.55$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$ and $7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.7$, 11.8 and $36.2\left(\mathrm{CH}_{3}\right), 103.1$ and $109.0(\mathrm{C}), 137.5(\mathrm{CH}), 158.0$, 158.8 and $170.0(\mathrm{C}) ; m / z 178\left(\mathrm{M}^{+}\right), 151,96$ and 68.

3-(1-Hydroxyethylidene)piperidine-2,4-dione

Prepared as described for 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione 29, but using 3-methyl-4,5,6,7-tetrahydroisoxazolo[$4,5-c$]pyridin-4-one $\mathbf{8 b}(0.045 \mathrm{~g}, 0.30 \mathrm{mmol})$ and palladium on charcoal ($10 \% \mathrm{Pd}, 45 \mathrm{mg}$), to yield the title compound as a white solid $(0.046 \mathrm{~g}, 97 \%), \mathrm{mp} 174-176^{\circ} \mathrm{C}$ (Found: M^{+}, 155.0548 ; $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires $M, 155.0582$); $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ 272 (5000); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3170,1660,1628,1331,1248,1039$ and 720; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}-\mathrm{CDCl}_{3}\right) 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.90\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$ and $3.70\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$; $\delta_{\mathrm{C}}\left[68 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 25.1\left(\mathrm{CH}_{3}\right), 35.0$ and $36.9\left(\mathrm{CH}_{2}\right), 100.8$, 171.5, 191.0 and $192.5(\mathrm{C}) ; m / z 155\left(\mathrm{M}^{+}, 100 \%\right), 140,85$ and 55.

3-Acetyl-1,2-dihydro-4-hydroxypyridin-2-one 54

Prepared as described for 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione 29, but using 3-methyl-4,5-dihydroisoxazolo[4,5-c]-pyridin-4-one $19(40.50 \mathrm{mg}, 0.27 \mathrm{mmol})$ and palladium on charcoal $(10 \% \mathrm{Pd}, 0.50 \mathrm{mg})$ to yield the title compound as a
white solid ($40.0 \mathrm{mg}, 97 \%$), mp 220-221 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{46} 212-214{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{M}^{+}, 153.0438 . \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}$ requires $M, 153.0426$); $\lambda_{\text {max }} /$ $\mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 323$ (5800); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3500$, 1864, 1623, 1253, 1228 and $765 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 2.60$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$), 5.95 and 7.40 (each $1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}=\mathrm{CH}$); $\delta_{\mathrm{C}}(68$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 31.6\left(\mathrm{CH}_{3}\right), 101.5(\mathrm{CH}), 108.6(\mathrm{C}), 142.6(\mathrm{CH})$, 164.5, 178.7 and $206.8(\mathrm{C}) ; m / z 153\left(\mathrm{M}^{+}, 100 \%\right), 111$ and 70.

5-(4-Methoxyphenyl)-3-acetyl-1,2-dihydro-4-hydroxypyridin-2one 55

Prepared as described for 3-(1-hydroxyethylidene)pyrrolidine-2,4-dione 29, but using 7-(4-methoxyphenyl)-3-methyl-4,5dihydroisoxazolo[$4,5-c$]pyridin-4-one $47(12.5 \mathrm{mg}, 0.049 \mathrm{mmol})$ and palladium on charcoal ($10 \% \mathrm{Pd}, 5 \mathrm{mg}$) to yield the title compound as an off-white solid ($13 \mathrm{mg}, 100 \%$), mp $230-232^{\circ} \mathrm{C}$ (Found: M^{+}, 259.0784. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires M, 259.0844); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1682 ; \delta_{\mathrm{H}}\left[500 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.41(3 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{CH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.94$ and 7.36 (each $2 \mathrm{H}, \mathrm{d}, J 7$, Ar-H), $7.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHN})$ and $11.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}[125$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 30.8$ and $55.1\left(\mathrm{CH}_{3}\right), 106.4$ and $111.7(\mathrm{C})$, $113.6(\mathrm{CH}), 124.9(\mathrm{C}), 130.0$ and $141.1(\mathrm{CH}), 158.5,161.6$, 175.1 and $205.5(\mathrm{C}) ; m / z 259\left(\mathrm{M}^{+}\right), 83,71$ and 57.

Acknowledgements

We thank EPSRC for studentships (G. B., K. A. M. D.) and a postdoctoral fellowship (S. H. D.), Shell Research for a CASE award (G. B.), Claire E. Dawson for her help in the preparation of 48, and the EPSRC National Mass Spectrometry Service (Swansea) for some MS data.

References

1 For leading references, see: R. C. F. Jones, M. J. Begley, G. E. Peterson and S. Sumaria, J. Chem. Soc., Perkin Trans. 1, 1990, 1959; B. J. L. Royles, Chem. Rev., 1995, 95, 1981; D. R. Williams, P. D. Lowder and Y.-G. Gu, Tetrahedron Lett., 1997, 38, 327; also ref. 3-20 below
2 M. J. Nolte, P. S. Steyn and P. L. Wessels, J. Chem. Soc., Perkin Trans. 1, 1980, 1057; S. Gelin and P. Pollet, Tetrahedron Lett., 1980, 21, 4491; H. B. Broughton and P. R. Woodward, J. Comput.-Aided Mol. Design, 1990, 4, 5147.
3 T. Rosett, R. H. Sankhala, C. E. Stickings, E. H. Taylor and R. Thomans, Biochem. J., 1957, 67, 390

4 F. A. Miller, W. A. Rightsel, B. J. Sloan, J. Ehrlich, J. C. French and Q. R. Bartz, Nature, 1963, 200, 1338.

5 J. G. Batelaan, J. W. F. K. Barnick, J. L. van der Baan and F. Bickelhaupt, Tetrahedron Lett., 1972, 3103, 3107; J. L. van der Baan, J. W. F. K. Barnick and F. Bickelhaupt, Tetrahedron, 1972, 34, 223
6 C. W. Holzapfel, Tetrahedron, 1968, 24, 2101.
7 K. Jomon, Y. Kuroda, M. Ajisaka and H. Sasaki, J. Antibiot., 1972, 25, 271
8 S. Ito and Y. Hirata, Tetrahedron Lett., 1972, 1181, 1185 and 2257 S. Ito and Y. Hirata, Bull. Chem. Soc. Jpn., 1977, 50, 1813.

9 R. K. Boeckman, Jr., C. H. Weidner, R. B. Perni and J. J. Napier J. Am. Chem. Soc., 1989, 111, 8036; L. A. Paquette, D. Macdonald L. G. Anderson and J. Wright, J. Am. Chem. Soc., 1989, 111, 8037.

10 R. C. F. Jones and R. F. Jones, Tetrahedron Lett., 1990, 31, 3363, 3367.

11 K. L. Rinehart, J. R. Beck, D. B. Borders, T. Kinstle and D. Krauss, J. Am. Chem. Soc., 1963, 85, 4038.

12 B. H. Howard and H. Raistrick, J. Biochem., 1954, 57, 212.
13 A. G. McInnes, D. G. Smith, C.-K. Wat, L. C. Vining and J. L. C. Wright, J. Chem. Soc., Chem. Commun., 1974, 281.

14 C.-K. Wat, A. G. McInnes, D. G. Smith, J. L. C. Wright and L. C. Vining, Can. J. Chem., 1977, 55, 4090.

15 C. Vos and P. E. J. Verwiel, Tetrahedron Lett., 1973, 2823 and 5173.
16 H. Maehr, M. Leach, L. Yarmchuk and A. Stempel, J. Am. Chem. Soc., 1973, 95, 8449; H. Maehr, M. Leach, T. H. Williams and J. F. Blount, Can. J. Chem., 1980, 58, 501.

17 H. Maehr, J. F. Blount, R. H. Evans, Jr., M. Leach, J. W. Westley, T. H. Williams, A. Stempel and G. Büchi, Helv. Chim. Acta, 1972, 55, 3051; H. Maehr, J. F. Blount, M. Leach, A. Stempel and G. Büchi, Helv. Chim. Acta, 1972, 55, 3054; 1974, 57, 212; H. Maehr, M. Leach, T. H. Williams, W. Benz, J. F. Blount and A. Stempel, J. Am. Chem. Soc., 1973, 95, 8448.

18 R. S. Dewey, O. D. Hensens, A. W. Douglas and G. AlbersSchönberg, J. Antibiot., 1991, 44, 838.
19 R. S. Dewey, B. H. Arison, J. Hannah, D. H. Shih and G. AlbersSchönberg, J. Antibiot., 1985, 38, 1691.
20 R. E. Dolle and K. C. Nicolaou, J. Am. Chem. Soc., 1985, 107, 1691, 1695; J. Chem. Soc., Chem. Commun., 1985, 1016.
21 See also: R. C. F. Jones and J. M. Patience, Tetrahedron Lett., 1989, 30, 3217
22 R. C. F. Jones and J. M. Patience, J. Chem. Soc., Perkin Trans. 1, 1990, 2350.
23 K. G. B. Torssell, Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH Publishers, New York, 1988.
24 G. Stork and J. E. McMurry, J. Am. Chem. Soc., 1967, 89, 5463
25 See, for example: P. Pollet and S. Gelin, Synthesis, 1978, 142
26 G. Stork, S. Danishefsky and M. Ohashi, J. Am. Chem. Soc., 1967, 89, 5459.
27 N. R. Natale, Tetrahedron Lett., 1982, 23, 5009.
28 M. Nitta and T. Kobayashi, J. Chem. Soc., Chem. Commun., 1982, 877.

29 C. J. Easton, C. M. Hughes, K. D. Kirby, G. P. Savage, G. W. Simpson and E. R. T. Tiekink, J. Chem. Soc., Chem. Commun., 1994, 2035.
30 For preliminary accounts of some of these results, see: R. C. F. Jones, G. Bhalay, P. A. Carter, K. A. M. Duller and S. I. E. Vulto, Synlett, 1995, 149; J. Chem. Soc., Perkin Trans. 1, 1994, 2513.
31 R. C. F. Jones, K. A. M. Duller and S. I. E. Vulto, J. Chem. Soc., Perkin Trans. 1, 1998, 411.
32 N. R. Natale, J. I. McKenna, C.-S. Niou and M. Borth, J. Org. Chem., 1985, 50, 5660.
33 R. C. F. Jones, S. H. Dunn and K. A. M. Duller, J. Chem. Soc., Perkin Trans. 1, 1996, 1319; R. C. F. Jones, G. Bhalay and P. A. Carter, J. Chem. Soc., Perkin Trans. 1, 1993, 1715.
34 Cf. M. T. Reetz, T. J. Strack, J. Kanand and R. Goddard, Chem. Commun., 1996, 733.
35 M. T. Reetz, M. W. Drewes and A. Schmitz, Angew. Chem., Int. Ed. Engl., 1987, 26, 1141.
36 H. J. Reich, J. M. Renga and I. L. Reich, J. Am. Chem. Soc., 1975, 97, 5434; H. J. Reich, I. L. Reich and J. M. Renga, J. Am. Chem. Soc., 1973, 95, 5813.
37 R. F. Heck, Org. React., 1982, 27, 345.
38 J. K. Stille, Pure Appl. Chem., 1985, 57, 1771; Angew. Chem., Int. Ed. Engl., 1986, 25, 508.
39 C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, P. M. Wovkulich and M. R. Uskokovic, Tetrahedron Lett., 1992, 33, 917.

40 J. L. Wardell and S. Ahmed (in part), J. Organomet. Chem., 1974, 78, 395.

41 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813.
42 V. Farina and B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585.
43 J. H. Rigby and M. Quabar, J. Org. Chem., 1989, 54, 5852
44 Purification of Laboratory Chemicals, D. D. Perrin and W. L. F. Armarego, Pergamon Press, Oxford, 1988
45 R. N. Lacey, J. Chem. Soc., 1954, 850.
46 M. Sato, N. Yoneda and C. Kaneko, Chem. Pharm. Bull., 1986, 34, 621.

